Adaptive Optics (AO) was first studied in the field of astronomy, and its applications have been extended to the field of laser, microscopy, bio, medical, and free space laser communication. AO modelling and simulation are required throughout the system development process. It is necessary not only for proper design but also for performance verification after the final system is built. In KASI, we are trying to develop the AO Python Package for AO modelling and simulation. It includes modelling classes of atmosphere, telescope, Shack-Hartmann wavefront sensor, deformable mirror, which are the components for an AO system. It also includes the ability to simulate the entire AO system over time. It is being developed in the Super Eye Bridge project to develop a segmented mirror, an adaptive optics, and an emersion grating spectrograph, which are future telescope technologies. And it is planned to be used as a performance analysis system for several telescope projects in Korea.
Narzulloev Oybek Mirzaevich;Jumamurod Aralov Farhod Ugle;Leehwan Hwang;Seunghyun Lee
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.77-84
/
2024
Aberration is still a problem for making augmented reality displays. The existing methods to solve this problem are either slow and inefficient, consume too much battery, or are too complex for straightforward implementation. There are still some problems with image quality, and users may suffer from eye strain and headaches because the images provided to each eye lack accuracy, causing the brain to receive mismatched cues between the vergence and accommodation of the eyes. In this paper, we implemented a computer simulation of an optical aberration using Zernike polynomials which are defocus, trefoil, coma, and spherical. The research showed that these optical aberrations impact the Point Spread Function (PSF) and Modulation Transfer Function (MTF). We employed the phase conjugate technique to mitigate aberrations. The findings revealed that the most significant impact on the PSF and MTF comes from the influence of spherical aberration and coma aberration.
목적: 특정 범위의 근시도 및 난시도에서 근시도 변화에 따른 고위수차의 증감 분석을 통해 근시도와 고위수차의 상관관계 알아보고자 하였다. 방법: Hartmann-Shack방식의 LADARWave 장비를 이용하여 총 992 안의 고위수차를 분석하였고, 현성굴절검사로 측정된 근시도값의 증가와 고위수차의 상관관계를 알아보았다. 결과: 전체 실험대상안에서 근시도가 증가함에 따라 총코마수차와 구면수차가 통계적으로 유의하게 증가하였으며, 트레포일 수차, 난시수차, 테트라포일 수차는 감소하였다. 근시도가 작은 군일수록 근시도에 따른 총코마수차의 변화가 더 급격하였으며 근시도가 작은 군에서는 통계적으로도 유의한 변화가 나타났다. 근시도가 -3.00 D 미만인 군은 근시도에 따른 구면수차값의 변화가 크지 않은 반면에 -3.00 D 이상인 군과 -6.00 D 이상인 군에서는 근시도에 따른 변화의 폭이 컸다. 특정 난시도 범위에서 근시도와 고위수차의 상관관계를 알아보았을 때 총코마수차는 난시도가 -1.00 D 이하인 군에서만 통계적으로 유의한 감소가 나타났다. 구면수차의 경우는 난시도가 작은 군일수록 근시도 증가에 따른 구면수차의 증가 폭이 더 커졌으며 모든 난시군에서 통계적으로 유의한 변화가 나타났다. 수평 및 수직코마수차는 특정 근시도 및 특정 난시도군별 일관성있는 증감관계가 성립하지 않았으며 통계적으로도 유의하지 않았다. 결론: 본 논문에서 밝힌 저위수차와 고위수차와의 상관관계를 통하여 시력의 질과 관련된 이해와 시력의 질 향상에 도움을 줄 수 있을 것으로 보여진다.
본 논문에서는 37채널을 갖는 적응광학계용 SiC(Silicon Carbide) 변형거울의 파면 보상 성능 검증에 관한 내용을 다룬다. 컴퓨터 시뮬레이션을 통해 SiC 변형거울의 파면 보상 성능을 예측하였고, 실제 closed-loop 적응광학계를 구성하여 파면 보상 성능을 확인 하였다. Closed-loop 적응광학계는 광원, 위상판, SiC 변형거울, 고속 샥-하트만 센서 그리고 제어용 컴퓨터로 구성되어있다. 회전하는 위상판에 의해 왜곡된 파면을 샥-하트만 센서로 측정하고, SiC 변형거울을 이용하여 왜곡된 파면을 보상해주는 시스템이다. 결과적으로 closed-loop 적응광학계에서 500 Hz의 속도로 PV(Peak-to-Valley) $0.3{\mu}m{\sim}0.9{\mu}m$, RMS(Root-Mean-Square) $0.06{\mu}m{\sim}0.25{\mu}m$의 왜곡된 파면을 PV $0.1{\mu}m$, RMS $0.03{\mu}m$이하로 보상시킬 수 있었다.
천체망원경의 성능은 여러가지 요소에 의해 결정된다. 대기 난류도 그 중 하나인데, 대기 난류는 망원경으로 수집한 빛을 왜곡시켜 이미지의 선명도와 해상도를 저하시킨다. 때문에 대기 난류를 보정하기 위한 기술이 연구되어 왔다. 보정 기술을 연구하기 위해서는 대기 난류를 실험실에서 모사해야 하며, 그 중 가장 실용적인 방법으로 위상판을 이용한 방법이 있다. 심한 난기류를 모사한 위상판을 측정할 때에는 주로 샥하트만 파면 센서로 측정하게 된다. 이 때, 레이저 광원은 위상판을 거쳐 샥-하트만 파면 센서로 들어가게 되는데 위상판을 거치면서 레이저의 세기가 줄어들고, 이로 인해 샥-하트만 파면 센서가 위상판을 측정하지 못하는 경우가 발생한다. 본 논문에서는 난기류를 모사한 위상판 측정 시 레이저 출력 조절의 필요성과 레이저 출력이 측정된 파면에 어떤 영향을 미치는지를 알아본다. 프라이드 파라미터 r0이 상대적으로 낮은 위상판의 경우 레이저 출력으로 인해 10% 이상 r0이 변화하였다. r0이 상대적으로 높은 위상판의 경우 레이저 출력으로 인한 변화가 5% 미만으로 r0이 거의 변하지 않음을 보였다. 따라서 난기류가 심한 대기 상태를 모사한 위상판일수록 레이저 출력의 영향이 미미함을 알 수 있었다. 또한, 본 논문의 시스템을 기준으로 레이저 출력 5 mW 이상에서 난기류를 모사한 위상판을 측정할 수 있었다.
In this paper, we presented the development results of high speed wavefront sensor which is used in diagnosing the beam quality of He-Ne laser for adaptive optics system. The beam quality information of laser in AO system is necessarily required for diagnosing the optical components or correcting the distorted wavefront afterward. According to system requirements, normally, it is requested that there are high precision of measurement and real time processing speed. The developed wavefront sensor in this paper achieved maximum 30Hz of measurement rate and ${\lambda}/20(\;{@}\;{\lambda}=0.6328{\mu}m)$ of measurement precision in RMS. We also applied the developed into an experimental adaptive system and verified the performance of it by correcting the aberrated wavefront with a rate of 30Hz and $\lambda$/20 precision using the combination of the developed and PID control algorithm.
In this paper, a new detection algorithm was proposed for finding the position of lenslet array spot pattern used to acquire laser wavefront. Based on the analysis of the required signal processing characteristics, we categorized into and designed four main signal processing functions. The proposed was designed in order to have robust feature against a variation of geometrical form of the spot and also implemented to have semi-automatic thresholding capability based on CCD noise analysis. For performance evaluation, we made qualitative and quantitative comparisons with Carvalho's algorithm which has been published in recent. In the given experimental spot images, the proposed could detect the spots which has 1/3 times lower than the least S/N of which Carvalho's can detect and could reach to a detection precision of 0.1 pixel at the S/N. In functional aspect, the proposed could separate all valid spots locally. From these results, the proposed could have a superior precision of location detection of spot pattern in wider S/N range.
We are developing Adaptive Optics (AO) system for astronomical use. The He-Ne laser works as an artificial light source. The tip-tilt correction servo is added to our AO system. The tip-tilt term, among the Zernike terms, is the biggest contributor of wavefront deformation caused by atmospheric turbulence at small telescopes. The tip-tilt correction servo consists of a Piezo tip-tilt platform with a mirror, a quadrant photodiode as a tip-tilt sensor, and controllers. The Shack-Hartmann wavefront sensor measures the residual wavefront errors and they are corrected by the MEMS (Micro Electro Mechanical System) deformable mirror. The MEMS deformable mirror allows the compact size at low cost compare to adaptive secondary mirror and other deformable mirrors. As the frame rates of the MEMS deformable mirror is about tens of kHz, the frame rates of the detector in wavefront sensor is the bottleneck of the wavefront correction speed. For faster performance, we replaced a CCD which provides frame rates only 70 Hz with a CMOS with frame rates up to 450 Hz.
PARK SEONG HEE;LEE KITAE;CHA YOUNG HO;JEONG YOUNG UK;BAIK SUNG HOON;YOO BYUNG DUK
Nuclear Engineering and Technology
/
제37권3호
/
pp.279-286
/
2005
A prototype of a relativistic proton generation system, based on laser-induced plasma interaction, has been designed and fabricated. The system is composed of three major parts: a fs TW laser; a target chamber, including targets and controls; and a diagnostic system for charged particles and lasers. An Offner-type pulse stretcher for chirped pulse amplification (CPA) and eight pass pre-amplifier are installed. The main amplifier will be integrated with a new pumping laser. The design values of the laser at the first stage are 1 TW in power and 50 fs in pulse duration. We expect to generate protons with their maximum energy of approximately 3 MeV and the flux of at least $10^6$ per pulse using a 10 $\mu$m Al target. A prototype target chamber with eight 8-inch flanges, including target mounts, has been designed and fabricated. For laser diagnostics, an adaptive optics based on the Shack-Hartmann type, beam monitoring, and alignment system are all under development. For a charged particle, CR-39 detectors, a Thomson parabola spectrometer, and Si charged-particle detectors will be used for the density profile and energy spectrum. In this paper, we present the preliminary design for laser-induced proton generation. We also present plans for future work, as well as theoretical simulations.
We built a simple Adaptive Optics (AO) system at laboratory. This AO system is a step toward developing AO system for astronomical use. In this step, the AO system consists of He-Ne laser as a artificial light source, wavefront sensor, MEMS (Micro electro mechanical system) type deformable mirror and several lenses. MEMS deformable mirror allows the compact system at low cost and the only several mm sized collimated beam. We made Shack-Hartmann wavefront sensor using a lenslet array and a fast frame CCD. Its performance is verified using an artificial phase disturber and noting the movement of spot images by the lenslet array. The frame rate of the driving software is about 70 fps, depending on the control parameters. The characteristics of MEMS deformable mirror was measured which includes the voltage-to-deflection relation, influence function, and cross-talk. The total system is operated under closed-loop control for the artificial phase disturber and the wavefront is found to be compensated successfully.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.