Sex-sorting of sperm is an assisted reproductive technology (ART) used by the livestock industry for the mass production of animals of a desired sex. The standard method for sorting sperm is the detection of DNA content differences between X and Y chromosome-bearing sperm by flow cytometry. However, this method has variable efficiency and therefore requires verification by a second method. We have developed a sex determination method based on quantitative real-time polymerase chain reaction (qPCR) of the porcine amelogenin (AMEL) gene. The AMEL gene is present on both the X and the Y chromosome, but the length and sequence of its noncoding regions differ between the X and Y chromosomes. By measuring the threshold cycle (Ct) of qPCR, we were able to calculate the relative frequency of X chromosome. Two sets of AMEL primers were used in these studies. One set (AME) targeted AMEL gene sequences present in both X and Y chromosome, but produced PCR products of different lengths for each chromosome. The other set (AXR) bound to AMEL gene sequences present on the X chromosome but absent esholthe Y-chromosome. Relative product levels were calculated by normalizing the AXR fluorescence to the AME fluorescence. The AMEL method accurately predicted the sex ratios of boar sperm, demonstrating that it has potential value as a sex determination method.
Seo, Hyun Ji;Lee, Ji Hye;Lee, Heung Kyo;Jung, Seung Hee;Lee, Kun Soo
Clinical and Experimental Pediatrics
/
v.48
no.12
/
pp.1317-1323
/
2005
Purpose : This study was performed to evaluate the recent frequency of karyotypes in different sex chromosome abnormalities and to evaluate the age and clinical manifestations at diagnosis. Methods : Peripheral blood leukocytes were obtained from subjects who were clinically suspected to have sex chromosome abnormalities and referred to the cytogenetic laboratory in the Department of Pediatrics, Kyungpook National University Hospital from February 1981 to August 2001. Results : The relative frequencies of different sex chromosome abnormalities were Klinefelter(52 percent), Turner(42 percent), XXX syndrome(3 percent) and mixed gonadal dysgenesis(3 percent). The populations of different karyotypes in Klinefelter syndrome were 47,XXY(97 percent) and 46,XY/47,XYY(3 percent). The populations of different karyotypes in Turner syndrome were 45,X(67 percent,), mosaicism(23 percent), and structural aberrations(10 percent). The populations of different karyotypes in XXX syndrome were 47,XXX(67 percent,) and 46,XX/47,XXX(33 percent). All mixed gonadal dysgenesis were 45,X/46,XY. Eighty one percent of sex chromosome abnormalities was diagnosed after puberty. Patients diagnosed with Klinefelter and Turner syndrome in infancy showed nearly normal phenotypes or had minor congenital malformations. Conclusion : Early diagnoses of sex chromosome abnormalities is required to prevent associated morbidities and to maximize growth and development. We have to pay careful attention in diagnoses of Turner syndrome because of the high proportion of mosaicism and structural aberrations.
The objective of this study was to develop a simplified, efficient, and accurate protocol for sexing goat embryos. Based on the amelogenin gene located on the conservation region of X- and Y- chromosomes, a pair of primers was utilized and the system of PCR was established to amplify a 262 bp fragment from the X- chromosome in female goats, and a 262 bp fragment from X- chromosome and 202 bp fragment from the Y- chromosome in male goats, respectively. The accuracy and specificity of the primers were assessed using DNA template extracted from goat whole blood sample of known sex. 100% (10/10) concordance was obtained by using the PCR assay. Fifty-one biopsied embryos were transferred into 25 recipient goats on the same day that the embryos were collected and sex of the kid was confirmed after parturition. Eighteen kids of predicted sex were born. The biopsied samples from 51 goat embryos were amplified with 100% efficiency and 94.7% accuracy. In conclusion, our results indicated that PCR sexing protocols based on the amelogenin gene is highly reliable and suitable for sex determination of goats.
OTF9-63 (OTF9) and P19S1O1A1 (P19) embryonal carcinoma (EC) cells were examined for their ability to produce the readivation of inactive X chromosomes from somatic cells. They were hybridized with various somatic cells and resulting HATr EC-somatic cell clones were analysed for their morphology, chromosomal replication pafterns and expression proffies of X-linked and distantiy located genes, Hprt and Pgk-1. The results demonstrated that 0RF9 cells could reactivate the inactive X chromosome whereas P19 cells could not. In adition, EC-somatic cell hybrids tended to reduce the number of sex chromosomes in long-term culture, resulting m 1:2 ratio of sex chromosomes to autosomes The use of EC cell hybrids provides an experimental system for studying the mechanism(s) of the X-reactivatio that is initiated and maintained from meiotic prophase of oogenesis to early embryogenesis.
Drosophila simulans and D. mauritiana are sibling species, the former cosmopolitan and the latter restricted to the oceanic island of Mauritius. Sex comb-tooth number of male flies of D. simulans were about 9.83, while those of D. mauritiana were 12.90. Genital arch of D. simulans is large semicircular shaped expasion, while that of D. mauritiana is a narrow fingerlike expansion. We used classical genetic analysis to measure effects of genes on the X chromosome responsible for numeral and morphological differences in sex comb-tooth and genital arch between these species, respectively. For these purposes, mutant strain of D. simulans and wild type strain of D. mauritiana were hybridized and males of the FI and the backcrossed progenies were compared with two characters above mentioned. The sex comb-tooth number of F, males were about 11.79, and the genitalia of F, male were intermediate in shape between those of D. simulans and D. mauritiana. Genetic analysis of sex comb-tooth number and genital arches differing between D. simulans and D. mauritiana showed that very little diffemce was due to effect of the X chromosome.
International Journal of Industrial Entomology and Biomaterials
/
v.8
no.2
/
pp.161-167
/
2004
Silkworms sex determination drew high attention from researchers. Sex chromosomes on the silkworm are of ZW type for females and ZZ type for males. Chromosome W plays an important role in sex determination. Although several molecular linkage maps have been constructed for silkworm, very few markers are discovered on the W chromosome. In order to look for molecular markers and to further locate the Fern gene on chromosome W, we used genomic DNA from both female and male larvae of a silkworm strain named 937 as PCR templates for RAPD amplification with 200 arbitrary 10-mer primers. The amplification results showed three female-specific bands, namely ${OPG-07_496}, {OPC-15_1,660} and {OPE-18_1,279}$. Further verification, however, revealed no band from OPG-07 and OPC-15 in either sex in the strain 798, but OPE-18 provided female-specific band in the strains Suluan7 and C108, and absent in both males and strain 798. This indicates that the bands from ${OPG-07_496} and {OPC-15_1,660}$ are probably female-specific in strain 937, and the band from OPE-18 was probably amplified from a common segment shared by most strains. The genomic DNAs from OPG-07 and OPC-15 were cloned and sequenced. Sequence analysis showed that the DNAs from OPG-07 and OPC-15 have high identities with the retrotransposable elements, and DNA from OPC-15 contains a portion of sequence which probably encodes an eukaryotic translation initiation factor 4E binding protein (eIF4EBP).
Sexing and developing from splitted embryos which were fertilized in vitro implicate a possibility of production of the superior and sex controlled individuals. This study was carried out to investigate the production of transferable late blastocysts from in vitro fertilized embryos and to analyze sex by chromosome analysis from same embryos. In results, the ratio of cleavage and fertility of bovine follicular oocytes matured in vitro was 90% in co-cultured with granulosa cells. The competence of embryonic development from in vitro matured and fertilized bovine oocytes was 38% in co-cultured with bovine oviductal epithelial cells. To produce a lot of transferable embryos, therefore, the best conditon of culture system was co-cultured with granulosa cells for immature bovine oocytes and then co-cultured with bovine oviductal eptithelial cells for matured and fertilized oocytes. In chromosome analysis, 93% of in vitro fertilized embryos were very important aspect in chromosome preparation from bovine embryos such as duration of colcemid treatment, weakening of zona pellucida, methods of hypotonic treatment and fixation treatment.
This study was performed to find out the reasonable sexing methods In the chicken, obtain the basic information for the mechanisms related to chicken sexual differentiation and identify the genes which known to involved in chicken sex differentiation. The chromosome analysis of chicken embryonic fibroblast was a simple method to determine sex of chicken by means of Z and W chromosome identification. The bands of female chicken genomic DNA digested with Xho Ⅰ and Eco RI restriction endonuclease showed to be useful in direct sex determination and these repetitive sequences of Xho Ⅰ and Eco RI families were proposed to be very homologous in their sequences by colony hybridization analysis. Seven of 150 random primers were selected to amplify the W chromosome-specific band by using arbitrary primed PCR and three of them were useful to identify the sex of chicken. To identify the sex differentiation genes in the chicken, PCR for the amplification of ZFY and SRY sequences was performed. ZFY and SRY sequences were amplified successfully in the chicken genome, implying that chicken genome might have the sex-related conserved sequences similar to mammalian ones. The PCR products of ZFY amplification were the same in both sexes, suggesting that these sequences may be located on autosome or Z chromosome. The profile of PCR amplification for SRY sequences showed variation between sexes, but this result was not enough to specify whether the SRY gene in chicken is on the autosome or sex chromosome.
A study on chromosome of leucocytes in blood cultures derived from 6 normal Korean was performed . Exact chromosome counts were carried out on 205 cells in male, 211 in female , of which 86.05% revealed a chormosome mordal number of 46. On the basis of relative chromosome lengths and position of centromeres, the Karyotype that the human chromosomes were classified into 7 groups with 22 airs of autosome and one pair of sex chromosome was determined accoridng to the method of denver report. The chromosome number on metaphase was observed in short term cultures of leucocytes from the peripheral blood of 2 patients with chronic granulocytic leukemia and 1 patient with acute granulocitic leukemia . and the chromosome morpholoogy was also investigated in one acute leukemic patient. In all leukemic cases the leucocytes showed the constant value of 46 in the stem -line of chormosome number. But the frequency of cells with 46 chromosomes appeared in the 3 cases was 67.30% in average with a slightly higher range in hypo-andhyper-diploid chromosome numbers than in normal human, The idiogram analysis did not show any abnormality of chromosome in acute leukemic cells.
Sohn, S.H.;Lee, C.Y.;Ryu, E.K.;Han, J.Y.;Multani, A.S.;Pathak, S.
Asian-Australasian Journal of Animal Sciences
/
v.15
no.11
/
pp.1531-1535
/
2002
It has been known that the sex of chicken cells can be most accurately identified by fluorescence in situ hybridization (FISH). However, the presently available FISH has not been widely used for sex identification, because the procedures for cell preparation and FISH itself are complicated and time-consuming. The present study was undertaken to test a rapid FISH procedure for sexing chicken. A FISH probe was simultaneously synthesized and labeled with digoxigenin by polymerase chain reaction (PCR) targeting a 416 bp segment of the 717 bp XhoI family fragment which is repeated over 10 thousand times exclusively in the W chromosome. Sexing by FISH was performed on cytological preparations of early embryos, adult lymphocytes and feather pulps of newly hatched chicks. The DNA probe hybridized to all types of uncultured interphase as well as metaphase female but not male cells that had been examined. Moreover, consistent with the known site of the XhoI family, the hybridization signal was localized to the pericentromeric region of the W chromosome. We, therefore, conclude that the present PCR-based FISH can be used as a rapid and reliable sex identification procedure for chicken.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.