• Title/Summary/Keyword: Sewerage treatment

Search Result 82, Processing Time 0.022 seconds

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Development of Process for Village Scale Wastewater Treatment Using Biofilter and Sulfur-limestone (바이오필터와 황-석회석을 이용한 마을하수 처리 공정 개발)

  • Kim, Tae-Kyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.75-86
    • /
    • 2007
  • This process which has a connection of biofilter and sulfur-limestone has been developed to treat organic substances including BOD, COD and SS etc. and to treat sulfur-limestone is for denitrification.. The whole process consists of chemical reaction tank, sedimentation tank, trickling filter, denitrification tank The trickling filter is equipped with a reactor filled with absorptive filter, and the sulfur denitrification tank is filled with sulfur-limestone mixed media. After setting up practical facilities whose capacity is 60 tons a day, we have observed the removal efficiencies of pollutants through 60 experiments during Summer and Winter seasons. The average concentration of polluted water was BOD for 3.6 mg/L, $COD_{Mn}$ for 11.3 mg/L, SS for 2.8 mg/L, T-N for 8.6 mg/L, and T-P for 0.8 mg/L, and the rate of treatment efficiencies 96.5%, 84.7%, 96.5%, 79.2%, and 80.8%, respectively was found through the experiments. The average treatment efficiency for BOD and $COD_{Mn}$ was 85.0% and 55.7%, respectively and the average removal efficiency for NH4+-N was 84.9% in the trickling filter. The removal efficiency in the denitrification tank is as follows; The removal rate of $NO_3^--N$ was as high as 93.2% within the compass of pH 6.3 to 7.3 through $16.8{\sim}37.0mg/L$ flown into $NO_3^--N$ and $0.1{\sim}8.3mg/L$ outflown. It had observed that this process has implemented highly efficient and advanced treatment without external carbon sources and internal recycle during its process. In conclusion, this process is suitable for a sewerage in a small village due to the merits of low power consumption and easy maintenance.

Daily influent variation for dynamic modeling of wastewater treatment plants

  • Dzubur, Alma;Serdarevic, Amra
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-123
    • /
    • 2020
  • Wastewater treatment plants (WWTPs) with activated sludge system are widely used throughout the most common technologies in the world. Most treatment plants require optimization of certain treatment processes using dynamic modeling. A lot of examples of dynamic simulations require reliable data base of diurnal variation of the inflow and typical concentrations of parameters such as Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), etc. Such detailed data are not available, which leads to problemsin the application of dynamic simulations. In many examples of plants, continuous flow measurements are only performed after the primary clarifier, whereas measurements from influent to the plant are missing, as is the case with the examples in this paper. In some cases, a simpler, faster and cheaper way can be applied to determine influent variations, such as the "HSG-Sim" method ("Hochschulgruppe Simulation"). "Hochschulgruppe Simulation" is a group of researchers from Germany, Austria, Switzerland, Luxembourg, Netherlands and Poland (see http://www.hsgsim.org). This paper presents a model for generating daily variations of inflow and concentration of municipal wastewater quality parameters, applied to several existing WWTPs in Bosnia and Herzegovina (B&H). The main goal of the applied method is to generate realistic influent data of the existing plants in B&H, in terms of flow and quality, without any prior comprehensive survey and measurements at the site. The examples of plants show the influence of overflow facilities on the dynamics of input flow and quality of wastewater, and a strong influence of the problems of the sewerage systems.

Suggestions for Cost Improvement of High concentration Linked Treatment in Municipal Wastewater Treatment Plant (하수처리장에서의 고농도 연계처리수에 대한 요금 개선 제안)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.92-99
    • /
    • 2020
  • Linked treatment refers to a system that relieves the burden of the business by linking high concentrations of wastewater such as human waste, manure, leachate, and other industrial wastewater to nearby municipal wastewater treatment plants(MWTPs). In 2018, 187 MWTPs, which are about 4.5% of the total domestic MWTPs, have implemented a linked treatment system, but local governments are having difficulties in operating sewage treatment due to lack of reasonable cost estimation standards. Therefore, we proposed an improvement plan to solve the problem in the calculation method that currently imposes linked wastewater. To this end, the effects and correlations of the linkage treatment system on the sewage treatment unit were analyzed, and among them, the main factors with the highest correlation were applied to the improvement plan. As a result, an improvement plan that improved three parts of the existing calculation method was presented, and the calculation method and the calculation case using the existing literature values were also presented. This can be used as a basis for future reference by local governments to implement linkage treatment, and to revise local sewerage ordinance and is believed to be helpful in operating a rational linkage system.

A Study on the Management System Improvement of Effluent Water Qualities for Public Sewage Treatment Facilities in Korea (우리나라 공공하수처리시설의 방류수 수질 관리체계 개선방안 고찰 - 미국, 일본, 유럽의 공공하수처리시설 방류수 수질 관리제도를 중심으로 -)

  • Jeong, Donghwan;Choi, Incheol;Cho, Yangseok;Chung, Hyenmi;Kwon, Ohsang;Yu, Soonju;Yeom, Icktae;Son, Daehee
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.296-314
    • /
    • 2014
  • In recent years, Ministry of Environment (MOE) has been implementing a phased strengthening of the effluent standards for sewage treatment plants. In this regard, a comprehensive system should be developed to help check the appropriateness of such standards by specifying the grounds for standard-setting and investigating the current operation of sewage treatment plants clearly. It is necessary to establish a new standard-setting system for the effluent that is in a closer connection with the environmental criteria and rating systems. In the United States, the federal government provides guidelines on the least provisions and requirements for the Publicly Owned Treatment Works (POTWs). Local governments set the same or stricter guidelines that reflect the characteristics of each state. In Japan, the sewage treatment plants are subject to both the effluent standards and the discharge acceptable limits to pubic waters under the sewerage law. Specific requirements and limits are set in accordance with local government regulations. The European Union imposes sewage treatment plants with different provisions for effluent standards, depending on the sensitivity of public waters to eutrophication. The effluent standards for sewage treatment plants are classified by pollutant loads discharged to receiving waters. MOE also needs to introduce systems for setting new parameter standards on a POTW effluent by applying statistical means and treatment efficiencies or optimal treatment techniques, as seen in the cases of the US National Pollutant Discharge Elimination System (NPDES) or the EU Integrated Pollution Prevention and Control (IPPC).

Water Quality Prediction and Forecast of Pollution Source in Milyanggang Mid-watershed each Reduction Scenario (밀양강 중권역 오염부하 전망 및 삭감 시나리오별 하류 수질예측)

  • Yu, Jae-Jeong;Yoon, Young-Sam;Shin, Suk-Ho;Kwon, Hun-Gak;Yoon, Jong-Su;Jeon, Young-In;Kang, Doo-Kee;Kal, Byung-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.589-598
    • /
    • 2011
  • Milyanggang mid-watershed is located in downstream of Nakdong river basin. The pollutants from that watershed have an direct effect on Nakdong river water quality and it's control is important to manage a water quality of Nakdong river. A target year of Milyanggang mid-watershed water environment management plan is 2013. To predict a water quality at downstream of Milyang river, we have investigated and forecasted the pollutant source and it's loading. There are some plan to construction the sewage treatment plants to improve the water quality of Milyang river. Those are considered on predicting water quality. As results, it is shown that the population of Milyanggang mid-watershed is 131,857 and sewerage supply rate is 62.2% and the livestock is 1,775.300 in 2006. It is estimated that the population is 123,921, the sewerage supply rate is 75.5% in 2013. The generated loading of BOD and TP is 40,735 kg/day and 2,872 kg/day in 2006 and discharged loading is 11,818 kg/day and 722 kg/day in 2006 respectively. Discharged loadings were forecasted upward 1.0% of BOD and downward 2.7% of TP by 2013. The results of water quality prediction of Milyanggang 3 site were 1.6 mg/L of BOD and 0.120 mg/L of TP in 2013. It is over the target water quality at that site in 2015 about 6.7% and 20.0% respectively. Consequently, there need another counterplan to reduce the pollutants in that mid-watershed by 2015.

Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters

  • Kwon, Gyutae;Nam, Ji-Hyun;Kim, Dong-Min;Song, Chulwoo;Jahng, Deokjin
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • This study was aimed to investigate the possibility of using raw and anaerobically-digested piggery wastewater as culture media for a green microalga Chlorella vulgaris (C. vulgaris). Due to high concentration of ammonia and dark color, the microalga did not grow well in this wastewater. In order to solve this problem, air stripping and NaOCl-treatment were applied to reduce the concentration of NH3-N and the color intensity from the wastewater. Algal growth was monitored in terms of specific growth rate, biomass productivity, and nutrient removal efficiency. As a result, C. vulgaris grew without any sign of inhibition in air-stripped and 10-folds diluted anaerobically-digested piggery wastewater with enhanced biomass productivity of 0.57 g/L·d and nutrient removal of 98.7-99.8% for NH3-N and 41.0-62.5% for total phosphorus. However, NaOCl-treatment showed no significant effect on growth of C. vulgaris, although dark color was removed greatly. Interestingly, despite that the soluble organic concentration after air stripping was still high, the biomass productivity was 4.4 times higher than BG-11. Moreover, air stripping was identically effective for raw piggery wastewater as for anaerobic digestate. Therefore, it was concluded that air stripping was a very effective method for culturing microalgae and removing nutrients from raw and anaerobically-digested piggery wastewaters.

Study on NADH which is the Air Volume Sensor in the Activated Sludge Reaction Tank (활성슬러지 반응탱크의 풍량제어지표인 NADH에 관한 연구)

  • Chung, Woo-jin;Hong, Sung-min;Kim, Han-lae;Chang, Soon-woong
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.439-446
    • /
    • 2016
  • Domestic sewerage treatment plant is operated by activated sludge method and its modified method by using microorganism. In most cases, a method of using microorganism is directly controlled by the operator based on individual judgment through factors of DO, pH and ORP. In addition, under aerobic condition in bioreactor, energy consumption including excessive air injection is learned to be somewhat plenty. In order to solve this problem, in most of the process, improvement of internal recycling and activated environmental factor of microorganism were researched extensively. However, as factors are changed depending on various conditions, it is not sufficient as an indicator of judgment. As such, a research on operation of bioreactor that measures metabolic change in short time by directly measuring activated condition of microorganism using NADH fluorometer is required in reality.It is considered that the method like this could supplement problem of energy consumption being occurred in the existing treatment method and operational optimization of bioreactor would be enabled by controlling optimal air volume. Therefore, in this study, in order to obtain optimal operational indicator of bioreactor, proper air volume control test was performed and through batch test and site evaluation, possibility of NADH sensor being utilized as operational control indicator of bioreactor is intended to be analyzed. In order to compare with measured value, DO, ORP that are operational control indicator of existing bioreactor were used. As MLSS concentration was increased through batch test, NADH value was increased and site evaluation also showed similar tendency to batch test. Resultantly, it could be confirmed that changing level of NADH fluorometer was a sensor that could measure bioreactor condition effectively and optimized scale of bioreactor is considered to be utilized.

Burden of Disease Attributable to Inadequate Drinking Water, Sanitation, and Hygiene in Korea

  • Kim, Jong-Hun;Cheong, Hae-Kwan;Jeon, Byoung-Hak
    • Journal of Korean Medical Science
    • /
    • v.33 no.46
    • /
    • pp.288.1-288.12
    • /
    • 2018
  • Background: Diarrheal and intestinal infectious disease caused by inadequate drinking water, sanitation, and hygiene (WASH) is not only a great concern in developing countries but also a problem in low-income populations and rural areas in developed countries. In this study, we assessed the exposure to inadequate WASH in Korea and estimated the burden of disease attributable to inadequate WASH. Methods: We used observational data on water supply, drinking water, sewage treatment rate, and hand washing to assess inadequate WASH conditions in Korea, and estimated the level of exposure in the entire population. The disease burden was estimated by applying the cause of death data from death registry and the morbidity data from the national health insurance to the population attributable fraction (PAF) for the disease caused by inappropriate WASH. Results: In 2013, 1.4% of the population were exposed to inadequate drinking water, and 1.0% were living in areas where sewerage was not connected. The frequency of handwashing with soap after contact with excreta was 23.5%. The PAF due to inadequate WASH as a cluster of risk factors was 0.353 (95% confidence interval [CI], 0.275-0.417), among which over 90% were attributable to hand hygiene factors that were significantly worse than those in American and European high-income countries. Conclusion: The level of hand hygiene in Korea has yet to be improved to the extent that it shows a significant difference compared to other high-income countries. Therefore, improving the current situation in Korea requires a continuous hand washing campaign and a program aimed at all people. In addition, continuous policy intervention for improvement of sewage treatment facilities in rural areas is required, and water quality control monitoring should be continuously carried out.

The improvement of the operating process of sewage treatment plants in the upstream area of dam by MASS FLOWmodelling (MASS FLOW 모델링을 통한 댐상류지역의 공공하수처리시설 공정개선방안)

  • Lee, Hyunseop;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.130-138
    • /
    • 2020
  • As of 2017, the sewerage penetration rate of Seoul and metropolitan cities is more than 90%, and the number of domestic sewage treatment plants increased by 25% from 3,064 in 2010 to 4,072 in 2017. Among them, sewage treatment plant operated by SBR system is 585, which is 17% higher than 2010. In order to improve the water quality of the water source and improve the operation of the small sewage facilities, the improvement of the process was studied by applying the modelling to 49 facilities of the sewage treatment plant in Andong Imha dam area with more than 500㎥/day 3 places and 46 places less than 500㎥/day. As an improvement plan for modelling, candidate data were derived by reviewing operation data for 5 years. 49 facilities are operated by 12 types of operating processes. Among them, 1 place mort than 500㎥/day with SBR method and 9 facilities with less than 500㎥/day were selected by dividing 46 sites into 3 types. As a result of applying modelling to more than 500㎥/day, it was possible to improve the quality of discharged water through SRT control and it was found that applying model to sites of small scale treatment plants can improve the removal efficiency of TP by up to 14.4%. As a result, the data of this study could be used to improve and improve the operation of sewage treatment plants and RCSTP(Rural Community Sewage Tratment Plant).