• 제목/요약/키워드: Sewage treatment sludge

검색결과 402건 처리시간 0.025초

Degradation of BTX by Aerobic Microbial Consortium (호기성 미생물 컨소시엄에 의한 BTX의 분해)

  • 문종혜;김종우;박진수;오광중;김동욱
    • KSBB Journal
    • /
    • 제16권1호
    • /
    • pp.61-65
    • /
    • 2001
  • In this study, a BTX degrading microbial consortium was obtained from the activated sludges of a BTX releasing sewage water and city sewage water treatment plant. The MY microbial consortium was developed for benzene and toluene degradation, whereas the MA microbial consortium was developed for xylene isomers. The major microorganism of the MA consortium was identified as Rhodococcus ruber DSM 43338T, whereas that of the MY consortium was Rhodococcus sp. In terms of the degradation of a single component, the removal rate of benzene was fastest and decreased in order; toluene, o-xylene, p-xylene and m-xylene. For degradation of mixed BTX, most BTX were degraded within 108 hours and the degradation rate showed either stimulatory or inhibitory effects depending on the composition. MA and MY microbial consortium obtained in this study may be used effectively to remove BTX biologically.

  • PDF

A Study on the Improvement of Safety Awareness through Process Safety Management of Biogas Plant

  • Hong, Eun Ju;Jeong, Myeong Jin
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.104-110
    • /
    • 2019
  • Since 1986, domestic sewage treatment plants have installed and operated biogas plants that produce biogas (digested gas) using food, livestock manure and sewage sludge as part of the use of alternative energy for energy independence. Despite concerns about safety accidents and risks of large-scale accidents due to the continuous expansion of biogas plants, the Ministry of Environment has managed and supervised biogas plants to be environmental plants, focusing on environmental management. There is a lack of safety awareness of workers' processes. Only recently has the process safety management (PSM) system been implemented in biogas plants, but workers' perceptions of process safety have changed. As there is a difference in the degree of safety process management and safety awareness among workers, it is necessary to establish clear and systematic safety management standards. Therefore, The purpose of this study is to examine whether the application of the plant safety management (PSM) system to biogas plants is effective for workers' safety awareness in order to ensure safe operation of biogas plants and prevent workers' safety accidents in advance.

Automatic control of coagulant dosage on the sedimentation and dissolved air flotation(SeDAF) process for enhanced phosphorus removal in sewage treatment facilities (하수처리시설에서 인 고도처리를 위한 일체형 침전부상공정(SeDAF)의 응집제 주입농도 자동제어기법 검토)

  • Jang, Yeoju;Jung, Jinhong;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제34권6호
    • /
    • pp.411-423
    • /
    • 2020
  • To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 ㎥/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision-making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 - 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.

Construction of Resource Recovery System for Organic Wastes (유기성 폐기물의 자원화 체제구축에 관한 연구)

  • 양재경;최경민
    • Journal of Korea Technology Innovation Society
    • /
    • 제2권2호
    • /
    • pp.290-308
    • /
    • 1999
  • In this study a system for the treatment or recyling of organic wastes from both urban and rural area was recommended. It was developed based on the resource recovery system regarding human being by four tectnologies; forage, methane production, high-grade composting and complete decomposition. High quality compost can be produced by combining several kind of wastes produced from urban and agricultural areas. High quality compost must possess not only general characteristics of ordinary compost, but also a superior ability to improve the soil properties and must contain more nutrients for plant. Cedar chips were recommended as the main bulking agent to adjust moisture contents and air permeability. Charcoal and zeolite can be used not only as the second bulking agent but also as fertilizer for improve the soil amendment. Complete decomposition of organic wastes is defined by organic matter being completely converted to $CO_2$ and water. All the input water was evaporated by the heat produced through the oxidation of organic matter, In the present study, the complete treatments were successfully achieved for Shochu wastewater, swine wastes, thickened excess sewage sludge, wastes produced by Chinese restaurant and anaerobic digested sludge. First of all, recycling center of organic wastes should be established for the protect the environments and effective recovery of organic resources. This may means the way to derive the recovery of human value.

  • PDF

The Effect of Pre-treatment on the Anaerobic Digestion of waste Activated Sludge (하수슬러지의 혐기적 소화효율 향상을 위한 전처리 효과)

  • Kang, Chang-Min;Kim, Bong-Keun;Kim, In-Su;Kim, Byung-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제9권1호
    • /
    • pp.90-98
    • /
    • 2001
  • The slow degradation rate of sewage sludge in anaerobic digesters is due to the rate limiting step of sludge hydrolysis. Therefore, the pre-treatment process had been carried out using acidic(pH 1.5, 3, 4, 5) and alkaline(pH9, 10, 13), thermal(50, 100, 150, $200^{\circ}C$) and ultrasonic treatment(400W, 20kHz, 15, 20, 25, 30, 35, 40, 50, 60min). In the best conditions of each treatment, the SCOD ratio(%) of treated/untreared samples were increased 102% in acid(pH5), 986% in alkali(pH13), 959% in thermal($200^{\circ}C$) and 1123% in ultrasonic(35min) treatment. As the result, the ultrasonic treatment was most effective, followed by alkali, thermal, acidic treatment. In the effects of total gas productivity, the thermal($200^{\circ}C$) pretreatment was the highest, followed by thermal($150^{\circ}C$), ultrasonic(90min), alkaline(pH9) and ultrasonic(50min).

  • PDF

A Study on Current Energy Consumption and Recycling at Public Wastewater Treatment Plants in Korea (국내 공공하수도 시설의 에너지 사용 및 자원화실태 조사연구)

  • Park, Seungho;Kim, Byongjoo;Bae, Jae-Ho;Lee, Cheol Mo;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제21권5호
    • /
    • pp.539-549
    • /
    • 2007
  • To establish effective and prompt measures for energy conservation in public wastewater treatment plants in Korea, energy consumption rates in 233 utilities in 9 provinces and 7 metropolitan cities are investigated and compared to the rest of the world. Mean load factor for wastewater treatment utilities is 74.9% and those for influent pumps and aeration blowers are 56.2% and 61.0%, respectively. Mean electrical energy usages as the key performance indicators are $0.243kWh/m^3$ for overall sewage treatments and 2.07 kWh per unit kg BOD removal. Digester gas as one of major byproducts in the process amounts to $382,000m^3/day$ nationwide. While major part of the digester gas is used for sludge heating, only 7.3% of the gas is utilized for electricity generation. Both efficiencies for BOD removal and digestion gas generation are considerably lower than those in USA and EU utilities due to low concentration of organic material in influent wastewater. Such low energy regeneration, in turn, results in significantly higher energy consumption in Korean plants, compared to that in USA and EU ones.

Effect of Temperature on Nitritation using Effluent of Anaerobic Digester (혐기 소화조 유출수의 아질산화 반응에 온도가 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • 제27권3호
    • /
    • pp.286-292
    • /
    • 2011
  • Preparing for the Standards for Effluents which will be strengthen from 2012, many ways like remodellings and repairs of sewage treatment plant (STP) are considered. The treatment of the recycle water from the sludge treatment process contains high-strength organic compounds and nitrogen is considered as alternative. In the treatment of high-strength nitrogen, nitritation has more economic advantages than nitrification. In this study, lab-scale reactor was operated at the $35^{\circ}C$, $20^{\circ}C$ and $10^{\circ}C$ conditions using effluent of anaerobic digester to investigate the nitrogen removal by nitritation. Long-term stable nitritation was achieved at the $35^{\circ}C$, $20^{\circ}C$ but $10^{\circ}C$. In the stable nitritation states, nitrite conversion was higher at the high temperature of $35^{\circ}C$ than the room temperature of $20^{\circ}C$. Also shorter solid retention time (SRT) was needed to induce high nitrite conversion at the high temperature of $35^{\circ}C$. It was showed that temperature and SRT are important factors to induce nitritation.

Biodegradation of crude oil hydrocarbons by Acinetobacter sp. isolated from activated sludge (활성슬러지에서 단리한 Acinetobacter sp.에 의한 원유탄화수소분해)

  • Dong-Hyuk CHOI;Dong Hoon LEE
    • Journal of Korea Soil Environment Society
    • /
    • 제5권1호
    • /
    • pp.97-108
    • /
    • 2000
  • A Gram-type negative bacteria that can utilize crude oil as the sole source of carbon and energy was isolated from an activated sludge of a local sewage treatment plant and identified tentatively as belonging to the genus Acinetobacter. The isolate could degrade n-alkanes and unidentified hydrocarbons in crude oil and utilize n-alkanes, hydrophobic substrates, as sole carbon and energy sources. n-Alkanes from tridecane (Cl3) to triacontane (C30) in crude oil were degraded simultaneously with no difference in degradation characteristics between the two close odd and even numbered alkanes in carbon numbers. The linear growth of the isolate and the degradation characteristics of Pr-alkanes suggested that the transport of substrates from the oil phase to the site where the substrates undergo the initial oxidation in microorganism might be the rate limiting in the biodegradation process of crude oil constituents. The remainder fraction of substrates after cultivation was considered to reflect the hydrocarbon inclusions in the cell mass, characteristics in Acinetobacter species, and to control the transport of substrates from crude oil phase. On the basis of the results, the isolate was considered to play an important role in the degradation study of hydrophobic environmental pollutants.

  • PDF

Analysis of laboratory scale nitriation reactor using sludge thickener supernatant (농축조 상징액을 대상으로한 실험실 규모 아질산화 반응조 분석)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • 제17권4호
    • /
    • pp.414-420
    • /
    • 2015
  • Nitrogen is one of main causes to induce eutrophication of water system and one of contaminants that must be treated for protection of water system. In this study, it was intended to identify a method to increase operation efficiency of municipal wastewater treatment plant (MWTP) by treating high concentration nitrogen. A laboratory scale reactor was operated by using sludge thickener supernatant in the MWTP. During operation of the laboratory scale reactor, it was intended to induce stable nitritation and analyze effects of related operation factors. As results, it was shown that the nitiritation could be induced artificially through control of retention time and sections where the stable nitiritation was induced were identified also. In particular, highly efficient nitrite conversion efficiency near 90% was identified in condition of 1 day retention time. Especially, it was shown that ammonium nitrogen load affected ammonium nitrogen removal efficiency and nitrite conversion efficiency. In the condition of high ammonium nitrogen load, the nitrite conversion efficiency and the ammonium nitrogen removal efficiency decreased. On the contrary in the condition of low ammonium nitrogen load, it was found that the nitrite conversion efficiency decreased. It means that control of ammonium nitrogen concentration and its retention time is needed for the nitritation. It is considered that for the sewage containing high load nitrogen in sludge treatment process as like the sludge thickener supernatant, the nitritation can be applied, which can be suggested as a modification method of MWTP.

Assessment of the Organic and Nitrogen Fractions in the Sewage of the Different Sewer Network Types by Respirometric Method (미생물 호흡률 측정에 의한 관거시스템 유형별 하수의 기질 분율 평가)

  • Park, Jong-Bu;Hur, Hyung-Woo;Kang, Ho;Chang, Sung-Oun
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제31권8호
    • /
    • pp.649-654
    • /
    • 2009
  • Respirometric analysis of domestic sewage by measuring oxygen uptake rate(OUR) was carried out for the experimental assessment of the organic and biomass fractions. The data of the organic and biomass fractions in sewage is essential for the activated sludge model to optimize the biological treatment plant. As a result of this study, the fractions of readily biodegradable substrate($S_S$), slowly biodegradable substrate($X_S$), inert soluble substrate($S_I$), inert particular substrate($X_I$) and heterotrophic biomass($X_{HAB}$) were about 26.6%, 41.5%, 8.5%, 14.7% and 8.7% on the basis of chemical oxygen demand($COD_{Cr}$), respectively. And the fractions of nitrogen were also studied. The fractions of soluble nitrate nitrogen($S_{NO}$), soluble ammonia nitrogen($S_{NH}$), soluble nonbiodegradable organic nitrogen($S_{NI}$), soluble biodegradable organic nitrogen($S_{ND}$) and slowly biodegradable organic nitrogen($X_{ND}$) were about 3.7%, 64.9%, 4.7%, 9.4% and 17.4%, respectively.