• 제목/요약/키워드: Severe nuclear accidents

검색결과 171건 처리시간 0.029초

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

중대 노심사고시 격납용기 손상유형에 대한 고찰 (Possible Containment Failure Mechanisms in Severe Core Meltdown Accidents)

  • Kang Yul Huh;Jong In Lee;Jin Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.53-67
    • /
    • 1985
  • 중대 노심사고는 아직 Design Basis Accident에 포함되지 않고 있으나, 극히 적은 사고 확률을 가지는 반면 사고 후 영향이 큼으로해서 원자력발전소의 전반적 위험 평가에 중요한 요인중의 하나가 되고 있다. 중대 노심사고시 격납용기 손상에 관련된 물리현상들은 Steam Explosion, Debris Bed Coolability, Hydrogen Burning, Steam Spike와 Core-Concrete Interaction 등이며, 각각의 현상에 대한 좀 더 나은 이해를 위해 현재 이루어지고 있는 연구들에 대한 개략적 설명을 시도 하였다.

  • PDF

FRENCH PROGRAM TOWARDS AN INNOVATIVE SODIUM COOLED FAST REACTOR

  • Martin, Ph.;Anzieu, P.;Rouault, J.;Serpantie, J.P.;Verwaerde, D.
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.237-248
    • /
    • 2007
  • Sodium-cooled fast reactor is considered in France as a potential candidate for a prototype of 4th generation system to be built by 2020. A detailed working program has been launched recently to identify by 2012 the potential improvement tracks for later industrial development of these reactors. The goals for innovation are first identified: Progress of the safety with a special attention to severe accidents risk minimization and mitigation (defense in depth approach); Economic competitiveness of the system mainly by reducing the capital cost, the investment risks by enhancing in service inspection and repair capacities, and raising the availability; Sustainability with fissile material management while reducing the proliferation risk; capacity for long-lived waste transmutation.

PREDICTION OF SEVERE ACCIDENT OCCURRENCE TIME USING SUPPORT VECTOR MACHINES

  • KIM, SEUNG GEUN;NO, YOUNG GYU;SEONG, POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.74-84
    • /
    • 2015
  • If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by estimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines when there is the possibility of a severe accident occurrence in an NPP. In any such situation, information about the occurrence time of severe accident-related events can be very important to operators to set up severe accident management strategies. Therefore, support systems that can quickly provide this kind of information will be very useful when operators try to manage severe accidents. In this research, the occurrence times of several events that could happen during a severe accident were predicted using support vector machines with short time variations of plant status variables inputs. For the preliminary step, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show that the proposed algorithm can correctly classify the break location of the LOCA and can estimate the break size of the LOCA very accurately. In addition, the occurrence times of severe accident major events were predicted under various severe accident paths, with reasonable error. With these results, it is expected that it will be possible to apply the proposed algorithm to real NPPs because the algorithm uses only the early phase data after the reactor SCRAM, which can be obtained accurately for accident simulations.

Fuzzy-technique-based expert elicitation on the occurrence probability of severe accident phenomena in nuclear power plants

  • Suh, Young A;Song, Kiwon;Cho, Jaehyun
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3298-3313
    • /
    • 2021
  • The objective of this study is to estimate the occurrence probabilities of severe accident phenomena based on a fuzzy elicitation technique. Normally, it is difficult to determine these probabilities due to the lack of information on severe accident progression and the highly uncertain values currently in use. In this case, fuzzy set theory (FST) can be best exploited. First, questions were devised for expert elicitation on technical issues of severe accident phenomena. To deal with ambiguities and the imprecision of previously developed (reference) probabilities, fuzzy aggregation methods based on FST were employed to derive the occurrence probabilities of severe accidents via four phases: 1) choosing experts, 2) quantifying weighting factors for the experts, 3) aggregating the experts' opinions, and 4) defuzzifying the fuzzy numbers. In this way, this study obtained expert elicitation results in the form of updated occurrence probabilities of severe accident phenomena in the OPR-1000 plant, after which the differences between the reference probabilities and the newly acquired probabilities using fuzzy aggregation were compared, with the advantages of the fuzzy technique over other approaches explained. Lastly, the impact of applying the updated severe accident probabilities on containment integrity was quantitatively investigated in a Level 2 PSA model.

직접냉각방식 및 간접냉각방식 Core Catcher의 성능비교 (Comparison Between Direct- and Indirect-Cooling Core Catchers)

  • 서정수;이종호;배병환
    • 대한기계학회논문집B
    • /
    • 제36권10호
    • /
    • pp.1043-1047
    • /
    • 2012
  • 유럽지역으로의 원전 수출을 위해서는 유럽의 원전 인허가요건을 충족시켜야 하며, 이에 따르면 원전의 중대사고 대처설비로 통상 Core Catcher로 불리는 노외 노심 용융물 냉각설비를 갖출 것을 권장하고 있다. 이에 따라 본 논문에서는 노심 용융물 직접냉각방식과 간접냉각방식에 대해 각각의 개념 안의 장/단점을 비교, 검토하였으며, 그 결과 직접냉각방식은 냉각효율 측면에서, 간접냉각방식은 중대사고 사고관리 측면에서 각각 우위를 보였다.

Study of contact melting of plate bundles by molten material in severe reactor accidents

  • J.J. Ma;W.Z. Chen;H.G. Xiao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4266-4273
    • /
    • 2023
  • In a severe reactor accident, a crust will form on the surface of the molten material during the core melting process. The crust will have a contact melting with the internal components of the reactor. In this paper, the contact melting process of the molten material on the austenitic stainless steel plate bundles is studied. The contact melting model of parabolic molten material on the plate bundles is proposed, and the rule and main effect factors of the contact melting are analyzed. The results show that the melting velocity is proportional to the slope of the paraboloid, the heat flux and the distance between two plates D. The influence of melt gravity and the plate width on melting velocity is negligible. The thickness of the molten liquid film is proportional to the heat flux and plate width, and it is inversely proportional to the gravity. With the increase of D, the liquid film thickness decreases at first and then increases gradually. The liquid film thickness has a minimum against D. When the width of the plate is small, the width of the plate is the main factor affecting the thickness of the liquid film. The parameters are coupled with each other. In a severe reactor accident, the wider internal components of reactor, which can increase the thickness of the melting liquid film and reduce the net input heat flux from the molten material to the components, are the effective measures to delay the melting process.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Study on the influence of flow blockage in severe accident scenario of CAP1400 reactor

  • Pengcheng Gao;Bin Zhang ;Jishen Li ;Fan Miao ;Shaowei Tang ;Sheng Cao;Hao Yang ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.999-1008
    • /
    • 2023
  • Deformed fuel rods can cause a partial blockage of the flow area in a subchannel. Such flow blockage will influence the core coolant flow and further the core heat transfer during the reflooding phase and subsequent severe accidents. Nevertheless, most of the system analysis codes simulate the accident process based on the assumed flow blockage ratio, resulting in inconsistencies between simulated results and actual conditions. This paper aims to study the influence of flow blockage in severe accident scenario of the CAP1400 reactor. First, the flow blockage model of ISAA code is improved based on the FRTMB module. Then, the ISAA-FRTMB coupling system is adopted to model and calculate the QUENCH-LOCA-0 experiment. The correctness and validity of the flow blockage model are verified by comparing the peak cladding temperature. Finally, the DVI Line-SBLOCA accident is induced to analyze the influence of flow blockage on subsequent CAP1400 reactor core heat transfer and core degradation. From the results of the DVI Line-SBLOCA accident analysis, it can be concluded that the blockage ratio is in the range of 40%-60%, and the position of severe blockage is the same as that of cladding rupture. The blockage reduces the circulation area of the core coolant, which in turn impacts the heat exchange between the core and the coolant, leading to the early failure and collapse of some core assemblies and accelerating the core degradation process.