• Title/Summary/Keyword: Severe nuclear accidents

Search Result 173, Processing Time 0.017 seconds

영광3, 4호기 비상운전지침용 원자로냉각재펌프 정지전략을 위한 소형냉각재상실사고 분석 (Small Break LOCA Analysis for RCP Trip Strategy for YGN 3&4 Emergency Procedure Guidelines)

  • Seo, Jong-Tae;Bae, Kyoo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.203-215
    • /
    • 1995
  • 소형냉각재 상실사고시 원자로냉각재펌프( RCP )의 지속적인 운전은 원자로냉각재의 불필요한 누출을 초래하여 심각한 노심노출 및 이에따른 핵연료 손상을 야기시킬 수 있다. TMI 사고 후 미국 NRC의 요구에 따라 CE형 발전소 사용자 단체에서는 “T2/L2”라는 RCP 트립전략을 개발하여 CE형 발전소에 적용 가능토록 일반비상운전지침서에 반영하였다. 상기 T2/L2 RCP 트립전략은 사고후 원자로 냉각재 계통의 압력이 감소하여 RCP 트립설정치에 도달하면 처음 두대의 RCP를 우선 정지시키고, 사고가 LOCA임이 확인되면 나머지 두대의 RCP를 정지시키는 방식을 채택하고 있다. 본 논문에서는 영광3, 4호기의 RCP 트립설정치를 분석, 선정하고 T2/L2 전략의 안전운전양상을 입증하였다 분석결과, 최악의 파단크기로 밝혀진 0.15 ft$^2$의 고온관 파단 LOCA 영광3, 4호기 RCP 트립설정치는 가압기 압력 1775 psia로 나타났으며, 운전원이 마지막 두대의 RCP를 트립시키지 못하였을 경우 혹은 최악의 시점에서 정지시켰을 경우에도 영광3, 4호기의 노심냉각능력은 확보될 수 있음이 확인되었다. 또한 영광3, 4호기의 RCP 트립전략은 미국 NRC가 요구하는 최대 핵연료피복재온도 관점에서의 10 CFR 50.46 요구조건과 운전원 조치시간 관점에서의 ANSI 58.8 요구조건도 충분히 만족함이 판명되었다 따라서, 1775 psia의 RCP 트립설정치를 사용한 영광3, 4호기의 T2/L2 RCP 트립전략은 사고시 운전원에게 향상된 운전지침을 제공할 수 있을 것으로 판단된다.

  • PDF

다성분 에어로졸계의 동특성 묘사를 위한 전산 코드의 개발 -불확실성 및 민감도 해석- (Development of Computer Code for Simulation of Multicomponent Aerosol Dynamics -Uncertainty and Sensitivity Analysis-)

  • Na, Jang-Hwan;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.85-98
    • /
    • 1987
  • 중대사고시 LMFBR의 에어로졸(aerosol) 동특성을 살피기 위해 전산코드인 MCAD (Multicomponent Aerosol Dynamics)가 개발되었다. 사고경과에 따른 두 방사능원의 상대적인 충돌확률을 적용하여 에어로졸계를 모사할 수 있다. Brownian 확산과 중력작용에 의한 결합 및 제거과정을 고려했으며, 입자형태를 묘사하기 위해 밀도보정과 형태요소(shape factor)를 동시에 고려하였다. ORNL의 NSPP-300 계열 실험자료와 기존의 코드를MCAD의 입증에 이용하였다. 그 결과 MCAD의 계산치와 실험치 및 기존의 코드 계산값이 일치함을 보여준다. 여러 입력자료의 불화실한 값들을 정의하고, 그들값의 한계로 설정하기 위하여 불확실성 및 민감도해석을 수행하였다. 14개의 입력자료를 선택하여 실험계획법과 Latin hypercube sampling에 의한 입력자료를 조합하여 그 회귀 (regression) 정도를 반응표면 계획법(Response surface method)에 의해 구하였다. 각 변수들의 중요성 및 시간경과에 따른 그들의 상대적인 등위를 결정하기 위하여 단계식 회귀방법 (Stepwise regression method)을 고려했다. LHS에 의한 회귀모형에 Monte Carlo Method를 적용하여 계산값 및 변수들에의 신뢰도를 향상시켰다.

  • PDF

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.