• 제목/요약/키워드: Severe environmental conditions

검색결과 263건 처리시간 0.023초

철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안 (Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis)

  • 강은경;양선욱;권지윤;양성병
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.79-105
    • /
    • 2023
  • 지구온난화와 기후변화 등의 유례없는 기상이변으로 전 세계 곳곳이 극심한 몸살을 앓고 있으며, 경제적 손실 또한 눈덩이처럼 불어나고 있다. 이러한 문제를 해결하기 위해 2016년 '파리기후변화협정(The Paris Agreement)'이 체결되어 지구의 평균온도 상승을 1.5℃ 아래로 유지하기 위한 정부간 협의체가 결성되었으며, 우리나라도 2050년 탄소중립을 선언함으로써 기후재앙을 막기 위한 노력을 진행하고 있다. 특히, 온실가스 배출로 인한 기온상승은 수출 의존도가 높은 우리나라 경제는 물론 환경과 사회 전반에 부정적인 영향을 미칠 것으로 예상된다. 또한, 교통수단의 다변화가 가속화되면서 수단선택의 변화도 크게 증가하고 있는 가운데 저성장 시대의 개발 패러다임이 도시재생으로 변화함에 따라, 노선의 수요 감소, 선형 개량, 도심 철도의 외곽 이설 등에 영향을 받아 증가하고 있는 철도 유휴부지 활용에 대한 관심이 높아지고 있다. 한편, 철도 유휴부지를 활용한 태양광발전은 '재생에너지 3020'의 태양광발전 목표를 일부 달성하면서도, 입지를 둘러싼 환경훼손과 주민 수용성 문제에서 자유로워질 수 있는 장점에도 불구하고, 설비실태나 설비계획에 있어 미진한 상황이다. 이에, 본 연구에서는 국가철도공단과 재생에너지클라우드플랫폼에서 제공하는 데이터를 활용하여 태양광발전 설비 설치가 가능한 적합 유휴지를 발굴 및 분석하는 알고리즘을 개발하고, 사용자가 원하는 조건을 고려한 잠재적인 적합 지역을 탐색 및 도출함으로써, 개발 초기 설비나 확충 등에 소요되는 막대한 비용을 절약할 수 있는 방안을 마련하고자 하였다. 본 연구는 다양한 군집분석을 활용하여 철도 유휴부지에 태양광발전 설치입지를 도출할 수 있는 최적의 알고리즘을 개발하고, 면적, 설치용량, 발전량, 예상수익 등이 모두 높은 '태양광발전 설치 적극권장 지역' 202곳을 도출하였다. 이를 바탕으로 경제와 환경을 동시에 고려한 관점에서 의사결정자의 합리적인 판단을 도울 수 있을 것으로 기대한다.

터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구 (A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제26권2호
    • /
    • pp.129-152
    • /
    • 2024
  • 터널 내 CCTV를 통한 딥러닝 객체인식 적용에 있어서 터널의 열악한 환경조건, 즉 낮은 조도 및 심한 원근현상으로 인해 오탐지가 대량 발생한다. 이 문제는 객체인식 성능에 기반한 영상유고시스템의 신뢰성 문제로 직결되므로 정탐지 향상과 더불어 오탐지의 저감 방안이 더욱 필요한 상황이다. 이에 본 논문은 딥러닝 객체인식 모델을 기반으로, 오탐지 데이터의 재학습을 통해 오탐지의 저감뿐만 아니라 정탐지 성능 향상도 함께 추구하는 오탐지 학습법을 제안한다. 본 논문의 오탐지 학습법은 객체인식 단계를 기반으로 진행되며, 학습용 데이터셋 초기학습 - 검증용 데이터셋 추론 - 오탐지 데이터 정정 및 데이터셋 구성 - 학습용 데이터셋에 추가 후 재학습으로 이어진다. 본 논문은 이에 대한 성능을 검증하기 위해 실험을 진행하였으며, 우선 선행 실험을 통해 본 실험에 적용할 딥러닝 객체인식 모델의 최적 하이퍼파라미터를 결정하였다. 그리고 본 실험에서는 학습영상 포맷을 결정하기 위한 실험, 반복적인 오탐지 데이터셋의 재학습을 통해 장기적인 성능향상을 확인하기 위한 실험을 순차적으로 진행하였다. 그 결과, 첫 번째 본 실험에서는 추론된 영상 내에서 객체를 제외한 배경을 제거시키는 경우보다 배경을 포함시키는 경우가 객체인식 성능에 유리한 것으로 나타났으며, 두 번째 본 실험에서는 재학습 차수별 독립적으로 오탐지 데이터를 재학습시키는 경우보다 차수마다 발생하는 오탐지 데이터를 누적시켜 재학습 시키는 경우가 지속적인 객체인식 성능 향상 측면에서 유리한 것으로 나타났다. 두 실험을 통해 결정된 방법으로 오탐지 데이터 재학습을 진행한 결과, 차량 객체 클래스는 1차 재학습 이후부터 AP값이 0.95 이상 우수한 추론 성능이 발현되었으며, 5차 재학습까지 초기 추론 대비 약 1.06배 추론성능이 향상되었다. 보행자 객체 클래스는 재학습이 진행됨에 따라 지속적으로 추론 성능이 향상되었으며, 18차 재학습까지 초기 추론대비 2.3배 이상 추론성능이 자가 향상될 수 있음을 보였다.

솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I) (Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I))

  • 임경빈;이경재;김용식
    • 한국산림과학회지
    • /
    • 제52권1호
    • /
    • pp.58-71
    • /
    • 1981
  • 충남(忠南) 전북지방(全北地方) 적송림(赤松林)의 천이과정(遷移過程)을 연구(研究)하기 위하여 솔잎혹파리의 피해지속기간(被害持續期間)에 따라 피해극기지(被害極基地) (5년전(年前)에 피해발생(被害発生))인 공주(公州)(A), 피해지속지(被害持續地)(10년전(年前)에 피해발생(被害発生))인 부여(扶餘)(B), 피해회복지(被害回復地)(20년전(年前)에 피해발생(被害発生))로서 고창지역(高敞地域)(C)을 조사지역(調査地域)으로 설정(設定)하고, 각(各) 조사지역별(調査地域別)로 환경요인(環境要因)과 식생상태(植生狀態)를 調査하여, 환경요인(環境要因)과 식생상태(植生狀態), 삼림군집(森林群集)의 비교(比較), 식물상(植物相)의 변화(変化) 등(等)을 분석(分析)한 결과(結果)를 요약(要約)하면 다음과 같다 1. 임분(林分)이 솔잎혹파리피해(被害)로 부터 회복(回復)되어 감에 따라 식생구성(植生構成)에 변화(変化)가 오고 대상수종(代償樹種)으로 발달(発達)된 참나무류(類)의 상대우점치(相対優点値)가 감소(減小)되었다. 그러나 본(本) 조사지역내(調査地域內)에서는 상수리나무의 상대우점치(相対優点値)가 다른 참나무류(類) 보다 높았다. 2. 솔잎혹파리피해(被害)가 지속(持續)됨에 따라 삼림군집(森林群集)의 종구성상태(種構成狀態)가 점차 다양(多樣)하여진다. 그후 피해(被害)가 회복(回復)됨에 따라 임분(林分)의 종구성상태(種構成狀態)는 단순화(单純化)되는 것으로 나타났다. 3. 상대밀도(相対密度) 및 상대우점치(相対優点値)의 상대치(相対値)에 의(依)한 식생천이(植生遷移)를 종합분석(綜合分析)한 결과(結果) 솔잎혹파리피해(被害)의 극심(極甚)에서 우점종(優点種)을 이루던 참나무류(類)가 피해(被害)로부터 회복(回復)되어감에 따라 그 값이 감소(減少)되고, 싸리류(類), 진달래류(類) 등(等)이 하층식생(下層植生)을 형성(形成)하는 삼림군집(森林群集)으로 변화(変化)하여 갔다. 4. 식생(植生)에 미친 토심(土深), 토양함수량(土壤含水量), 유기물함량(有機物含量), 그리고 유기물층(有機物層)의 두께는 본(本) 조사대상지(調査対象地)의 범위내에 있어서는 거의 같은 것으로 사료(思料)되었고 연평균강수량(年平均降水量)과 온도(温度)도 유사(類似)하였다고 본다.

  • PDF