• Title/Summary/Keyword: Severe accident

Search Result 670, Processing Time 0.02 seconds

Smart support system for diagnosing severe accidents in nuclear power plants

  • Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun;Hur, Seop;Kim, Hyeonmin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.562-569
    • /
    • 2018
  • Recently, human errors have very rarely occurred during power generation at nuclear power plants. For this reason, many countries are conducting research on smart support systems of nuclear power plants. Smart support systems can help with operator decisions in severe accident occurrences. In this study, a smart support system was developed by integrating accident prediction functions from previous research and enhancing their prediction capability. Through this system, operators can predict accident scenarios, accident locations, and accident information in advance. In addition, it is possible to decide on the integrity of instruments and predict the life of instruments. The data were obtained using Modular Accident Analysis Program code to simulate severe accident scenarios for the Optimized Power Reactor 1000. The prediction of the accident scenario, accident location, and accident information was conducted using artificial intelligence methods.

Fuzzy-technique-based expert elicitation on the occurrence probability of severe accident phenomena in nuclear power plants

  • Suh, Young A;Song, Kiwon;Cho, Jaehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3298-3313
    • /
    • 2021
  • The objective of this study is to estimate the occurrence probabilities of severe accident phenomena based on a fuzzy elicitation technique. Normally, it is difficult to determine these probabilities due to the lack of information on severe accident progression and the highly uncertain values currently in use. In this case, fuzzy set theory (FST) can be best exploited. First, questions were devised for expert elicitation on technical issues of severe accident phenomena. To deal with ambiguities and the imprecision of previously developed (reference) probabilities, fuzzy aggregation methods based on FST were employed to derive the occurrence probabilities of severe accidents via four phases: 1) choosing experts, 2) quantifying weighting factors for the experts, 3) aggregating the experts' opinions, and 4) defuzzifying the fuzzy numbers. In this way, this study obtained expert elicitation results in the form of updated occurrence probabilities of severe accident phenomena in the OPR-1000 plant, after which the differences between the reference probabilities and the newly acquired probabilities using fuzzy aggregation were compared, with the advantages of the fuzzy technique over other approaches explained. Lastly, the impact of applying the updated severe accident probabilities on containment integrity was quantitatively investigated in a Level 2 PSA model.

Conceptual Design of Information Displays Supporting Severe Accident Management in Nuclear Power Plants Based on Ecological Interface Design (EID) Framework (생태학적 인터페이스 디자인 프레임워크에 기반한 원전 중대사고 지원 정보디스플레이 개념설계)

  • Cho, Piljae;Ham, Dong-Han;Lee, Hyunchul
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.61-72
    • /
    • 2022
  • This study aims to propose a conceptual design of information displays for supporting responsive actions under severe accidents in Nuclear Power Plants (NPPs). Severe accidents in NPPs can be defined as accident conditions that are more severe than a design basis accident and involving significant core degradation. Since the Fukushima accident in 2011, the management of severe accidents is increasing important in nuclear industry. Dealing with severe accidents involves several cognitively complex activities, such as situation assessment; accordingly, it is significant to provide human operators with appropriate knowledge support in their cognitive activities. Currently, severe accident management guidelines (SAMG) have been developed for this purpose. However, it is also inevitable to develop information displays for supporting the management of severe accidents, with which human operators can monitor, control, and diagnose the states of NPPs under severe accident situations. It has been reported that Ecological Interface Design (EID) framework can be a viable approach for developing information displays used in complex socio-technical systems such as NPPs. Considering the design principles underlying the EID, we can say that EID-based information displays can be useful for dealing with severe accidents effectively. This study developed a conceptual design of information displays to be used in severe accidents, following the stipulated design process and principles of the EID framework. We particularly attempted to develop a conceptual design to make visible the principle knowledge to be used for coping with dynamically changing situations of NPPs under severe accidents.

An Application Study of Accident Analysis Method Based on Epidemiological Model to Improve Occupational Safety and Health Management System (사업장 안전보건관리체계 향상을 위한 역학모형 기반의 사고분석기법 활용 방안 연구)

  • Kyunghwan Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • The Severe Disaster Punishment Act had recently been established in order to promote safety and health (OSH) management system for severe accident prevention. OSH management system is primarily designed based on risk assessments; however, companies in industries have been experiencing difficulties in hazard identification and selecting proper measures for risk assessments and accident prevention. This study intended to introduce an accident analysis method based on epidemiological model in finding hazard and preventive measures. The accident analysis method employed in this study was proposed by the U.S. Department of Energy. To demonstrate the effectiveness of the accident analysis method, this study applied it to two accident cases occurred in construction and manufacturing industries. The application process and results of this study can be utilized in improving OSH management system and preventing severe accidents.

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident

  • Wonjun Choi;Kwang-Il Ahn;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4534-4550
    • /
    • 2022
  • Integrated severe accident codes should be capable of simulating not only specific physical phenomena but also entire plant behaviors, and in a sufficiently fast time. However, significant uncertainty may exist owing to the numerous parametric models and interactions among the various phenomena. The primary objectives of this study are to present best-practice uncertainty and sensitivity analysis results regarding the evolutions of severe accidents (SAs) and fission product source terms and to determine the effects of mitigation measures on them, as expected during a short-term station blackout (STSBO) of a reference pressurized water reactor (optimized power reactor (OPR)1000). Three reference scenarios related to the STSBO accident are considered: one base and two mitigation scenarios, and the impacts of dedicated severe accident mitigation (SAM) actions on the results of interest are analyzed (such as flammable gas generation). The uncertainties are quantified based on a random set of Monte Carlo samples per case scenario. The relative importance values of the uncertain input parameters to the results of interest are quantitatively evaluated through a relevant sensitivity/importance analysis.

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

Thermal Hydraulic Design Parameters Study for Severe Accidents Using Neural Networks

  • Roh, Chang-Hyun;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.469-474
    • /
    • 1997
  • To provide tile information ell severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore was performed to investigate the effect of thermal hydraulic design parameters ell severe accident progression of pressurized water reactors (PWRs), Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among mile parameters. For training. different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout(SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to tile other six parameters.

  • PDF

DEVELOPMENT OF DESKTOP SEVERE ACCIDENT TRAINING SIMULATOR

  • Kim, Ko-Ryuh;Park, Soo-Yong;Song, Yong-Mann;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.151-162
    • /
    • 2010
  • A severe accident training simulator that can simulate important severe accident phenomena and nuclear plant behaviors is developed. The simulator also provides several interactive control devices, which are helpful to assess results of a particular accident management behavior. A simple and direct dynamic linked library (DLL) data communication method is used for the development of the simulator. Using the DLL method, various control devices were implemented to provide an interactive control function during simulation. Finally, a training model is suggested for accident mitigation training and its performance is verified through application runs.

RESEARCH EFFORTS FOR THE RESOLUTION OF HYDROGEN RISK

  • HONG, SEONG-WAN;KIM, JONGTAE;KANG, HYUNG-SEOK;NA, YOUNG-SU;SONG, JINHO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-46
    • /
    • 2015
  • During the past 10 years, the Korea Atomic Energy Research Institute (KAERI) has performed a study to control hydrogen gas in the containment of the nuclear power plants. Before the Fukushima accident, analytical activities for gas distribution analysis in experiments and plants were primarily conducted using a multidimensional code: the GASFLOW. After the Fukushima accident, the COM3D code, which can simulate a multidimensional hydrogen explosion, was introduced in 2013 to complete the multidimensional hydrogen analysis system. The code validation efforts of the multidimensional codes of the GASFLOW and the COM3D have continued to increase confidence in the use of codes using several international experimental data. The OpenFOAM has been preliminarily evaluated for APR1400 containment, based on experience from coded validation and the analysis of hydrogen distribution and explosion using the multidimensional codes, the GASFLOW and the COM3D. Hydrogen safety in nuclear power has become a much more important issue after the Fukushima event in which hydrogen explosions occurred. The KAERI is preparing a large-scale test that can be used to validate the performance of domestic passive autocatalytic recombiners (PARs) and can provide data for the validation of the severe accident code being developed in Korea.