• Title/Summary/Keyword: Severe Storm

Search Result 103, Processing Time 0.023 seconds

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.

Hindcasting of Storm Surge at Southeast Coast by Typhoon Maemi

  • KAWAI HIROYASU;KIM DO-SAM;KANG YOON-KOO;TOMITA TAKASHI;HIRAISHI TETSUYA
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.12-18
    • /
    • 2005
  • Typhoon Maemi landed on the southeast coast of Korea and caused a severe storm surge in Jinhae Bay and Masan Bay. The tide gage in Masan Port recorded the storm surge of a maximum of more than 2m and the area of more than 700m from the Seo Hang Wharf was flooded by the storm surge. They had not met such an extremely severe storm surge since the opening of the port. Then storm surge was hindcasted with a numerical model. The typhoon pressure was approximated by Myers' empirical model and super gradient wind around the typhoon eye wall was considered in the wind estimation. The land topography surrounding Jinhae Bay and Masan Bay is so complex that the computed wind field was modified with the 3D-MASCON model. The motion of seawater due to the atmospheric forces was simulated using a one-layer model based on non-linear long wave approximation. The Janssen's wave age dependent drag coefficient on the sea surface was calculated in the wave prediction model WAM cycle 4 and the coefficient was inputted to the storm surge model. The result shows that the storm surge hindcasted by the numerical model was in good agreement with the observed one.

Reliagility Analysis of Tension Leg Platforms for Severe Storm Waves (대규모 폭풍에 대한 Tension Leg Platform의 신뢰도해석)

  • 박우선;윤정방
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.16-24
    • /
    • 1991
  • This paper presents a method of the reliability analysis for a tension leg platform(TLP)in severe storm waves by using the first passage concept of the random tensile stress in the tendons. In the present method, two failure conditions are considered ;i.e., the exceedance of the ultimate tensile capacity and the occurrence of the negative tension. In order to consider the correlation effects between the failure events for each corner resulted from the rupture of all tencons at one corner, a new system limit state for a rectangular shaped TLP is developed, which is defined in terms of the TLP motions in the vertical plane ;i.e., heave, roll, and pitch. To illustrate the validity of the present method, the numerical analysis is carried out for two TLP's with different structural dimensions. Then, the results are compared with those by other methods.

  • PDF

Development of Convective Cell Identification and Tracking Algorithm using 3-Dimensional Radar Reflectivity Fields (3차원 레이더 반사도를 이용한 대류세포 판별과 추적 알고리즘의 개발)

  • Jung, Sung-Hwa;Lee, GyuWon;Kim, Hyung-Woo;Kuk, BongJae
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper presents the development of new algorithm for identifying and tracking the convective cells in three dimensional reflectivity fields in Cartesian coordinates. First, the radar volume data in spherical coordinate system has been converted into Cartesian coordinate system by the bilinear interpolation. The three-dimensional convective cell has then been identified as a group of spatially consecutive grid points using reflectivity and volume thresholds. The tracking algorithm utilizes a fuzzy logic with four membership functions and their weights. The four fuzzy parameters of speed, area change ratio, reflectivity change ratio, and axis transformation ratio have been newly defined. In order to make their membership functions, the normalized frequency distributions are calculated using the pairs of manually matched cells in the consecutive radar reflectivity fields. The algorithms have been verified for two convective events in summer season. Results show that the algorithms have properly identified storm cells and tracked the same cells successively. The developed algorithms may provide useful short-term forecasting or nowcasting capability of convective storm cells and provide the statistical characteristics of severe weather.

Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed (기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향)

  • Han, Jeong Ho;Lee, Dong Jun;Kang, Boosik;Chung, Se Woong;Jang, Won Seok;Lim, Kyoung Jae;Kim, Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.

Current Status of Intensive Observing Period and Development Direction (집중관측사업의 현황과 발전 방향)

  • Kim, Hyun Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Domestic IOP (intensive observing period) has mostly been represented by the KEOP (Korea Enhanced Observing Period), which started the 5-yr second phase in 2006 after the first phase (2001-2005). During the first phase, the KEOP had focused on special observations (e.g., frontal systems, typhoons, etc.) around the Haenam supersite, while extended observations have been attempted from the second phase, e.g., mountain and downstream meteorology in 2006 and heavy rainfall in the mid-central region and marine meteorology in 2007. So far the KEOP has collected some useful data for severe weather systems in Korea, which are very important in understanding the development mechanisms of disastrous weather systems moving into or developing in Korea. In the future, intensive observations should be made for all characteristic weather systems in Korea including the easterly in the central-eastern coastal areas, the orographically-developed systems around mountains, the heavy snowfall in the western coastal areas, the upstream/downstream effect around major mountain ranges, and the heavy rainfall in the mid-central region. Enhancing observations over the seas around the Korean Peninsula is utmost important to improve forecast accuracy on the weather systems moving into Korea through the seas. Observations of sand dust storm in the domestic and the source regions are also essential. Such various IOPs should serve as important components of international field campaign such as THORPEX (THe Observing system Research and Predictability EXperiment) through active international collaborations.

Inundation Analysis on Coastal Zone around Masan Bay by Typhoon Maemi (No. 0314) (태풍 매미(0314호)에 의한 마산만 주변연안역에서의 범람해석)

  • Chun, Jae-Young;Lee, Kwang-Ho;Kim, Ji-Min;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.8-17
    • /
    • 2008
  • Wrenching climatic changes due to ecocide and global wanning are producing a natural disaster. Coastal zones have been damaged by typhoons and accompanying storm surges. Severe waves, and destruction of the environment are adding to the severity of coastal disasters. There has been an increased interest in these coastal zone problems, and associated social confusion, after the loss of life and terrible property damage caused by typhoon Maemi. Especially if storm surges coincide with high ticks, the loss of life and property damage due to high waters are even worse. Therefore, it is desirable to accurately forecast not only the timing of storm surges but also the amount water level increase. Such forecasts are very important from the view point of coastal defense. In this study, using a numerical model, storm surge was simulated to examine its fluctuation characteristics for the coastal area behind Masan Bay, Korea. In the numerical model, a moving boundary condition was incorporated to explain wave run-up. Numerically predicted inundation regimes and depths were compared with measurements from a field survey. Comparisons of the numerical results and measured data show a very good correlation. The numerical model adapted in this study is expected to be a useful tool for analysis of storm surges, and for predicting inundation regimes due to coastal flooding by severe water waves.

A Node Status Control Algorithm in Mobile Ad-Hoc Networks (MANET 환경에서 노드 상태 제어 알고리즘)

  • Lee, Su-Jin;Choi, Dae-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.188-190
    • /
    • 2014
  • In mobile ad hoc networks(MANETs), each node rebroadcast received route request packets for route discovery. Flooding from large number of nodes induces the broadcast storm problem which causes severe degradation in network performance due to redundant retransmission, collision and contention. This paper presents a node status algorithm based on probabilistic scheme to alleviate the broadcast storm problem for wireless ad hoc networks.

Calculations of Storm Surges, Typhoon Maemi (해일고 산정 수치모의 실험, 태풍 매미)

  • Lee, Jong-Chan;Kwon, Jae-Il;Park, Kwang-Soon;Jun, Ki-Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.93-100
    • /
    • 2008
  • A multi-nesting grid storm surge model, Korea Ocean Research and Development Institute-Storm surge model, was calibrated to simulate storm surges. To check the performance of this storm surge model, a series of numerical experiments were explored including tidal calibration, the influence of the open boundary condition, the grid resolutions, and typhoon paths on the surge heights using the typhoon Maemi, which caused a severe coastal disasters in Sep. 2003. In this study the meteorological input data such as atmospheric pressure and wind fields were calculated using CE wind model. Total 11 tidal gauge station records with 1-minute interval data were compared with the model results and the storm surge heights were successfully simulated. The numerical experiments emphasized the importance of meteorological input and fine-mesh grid systems on the precise storm surge prediction. This storm surge model could be used as an operational storm surge prediction system after more intensive verification.