• Title/Summary/Keyword: Severe Acute Respiratory Syndrome

Search Result 302, Processing Time 0.03 seconds

SARS-CoV-2 Delta (B.1.617.2) Variant: A Unique T478K Mutation in Receptor Binding Motif (RBM) of Spike Gene

  • Hyunjhung Jhun;Ho-Young Park;Yasmin Hisham;Chang-Seon Song;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.32.1-32.14
    • /
    • 2021
  • Over two hundred twenty-eight million cases of coronavirus disease 2019 (COVID-19) in the world have been reported until the 21st of September 2021 after the first rise in December 2019. The virus caused the disease called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 4 million deaths blame COVID-19 during the last one year and 8 months in the world. Currently, four SARS-CoV-2 variants of concern are mainly focused by pandemic studies with limited experiments to translate the infectivity and pathogenicity of each variant. The SARS-CoV-2 α, β, γ, and δ variant of concern was originated from United Kingdom, South Africa, Brazil/Japan, and India, respectively. The classification of SARS-CoV-2 variant is based on the mutation in spike (S) gene on the envelop of SARS-CoV-2. This review describes four SARS-CoV-2 α, β, γ, and δ variants of concern including SARS-CoV-2 ε, ζ, η, ι, κ, and B.1.617.3 variants of interest and alert. Recently, SARS-CoV-2 δ variant prevails over different countries that have 3 unique mutation sites: E156del/R158G in the N-terminal domain and T478K in a crucial receptor binding domain. A particular mutation in the functional domain of the S gene is probably associated with the infectivity and pathogenesis of the SARS-CoV-2 variant.

Ongoing Clinical Trials of Vaccines to Fight against COVID-19 Pandemic

  • Chiranjib Chakraborty;Ashish Ranjan Sharma;Manojit Bhattacharya;Garima Sharma;Rudra P. Saha;Sang-Soo Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.22
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has developed as a pandemic, and it created an outrageous effect on the current healthcare and economic system throughout the globe. To date, there is no appropriate therapeutics or vaccines against the disease. The entire human race is eagerly waiting for the development of new therapeutics or vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Efforts are being taken to develop vaccines at a rapid rate for fighting against the ongoing pandemic situation. Amongst the various vaccines under consideration, some are either in the preclinical stage or in the clinical stages of development (phase-I, -II, and -III). Even, phase-III trials are being conducted for some repurposed vaccines like Bacillus Calmette-Guérin, polio vaccine, and measles-mumps-rubella. We have highlighted the ongoing clinical trial landscape of the COVID-19 as well as repurposed vaccines. An insight into the current status of the available antigenic epitopes for SARS-CoV-2 and different types of vaccine platforms of COVID-19 vaccines has been discussed. These vaccines are highlighted throughout the world by different news agencies. Moreover, ongoing clinical trials for repurposed vaccines for COVID-19 and critical factors associated with the development of COVID-19 vaccines have also been described.

SARS-CoV-2 Antibody Neutralization Assay Platforms Based on Epitopes Sources: Live Virus, Pseudovirus, and Recombinant S Glycoprotein RBD

  • Endah Puji Septisetyani;Pekik Wiji Prasetyaningrum;Khairul Anam;Adi Santoso
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.39.1-39.18
    • /
    • 2021
  • The high virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that emerged in China at the end of 2019 has generated novel coronavirus disease, coronavirus disease 2019 (COVID-19), causing a pandemic worldwide. Every country has made great efforts to struggle against SARS-CoV-2 infection, including massive vaccination, immunological patients' surveillance, and the utilization of convalescence plasma for COVID-19 therapy. These efforts are associated with the attempts to increase the titers of SARS-CoV-2 neutralizing Abs (nAbs) generated either after infection or vaccination that represent the body's immune status. As there is no standard therapy for COVID-19 yet, virus eradication will mainly depend on these nAbs contents in the body. Therefore, serological nAbs neutralization assays become a requirement for researchers and clinicians to measure nAbs titers. Different platforms have been developed to evaluate nAbs titers utilizing various epitopes sources, including neutralization assays based on the live virus, pseudovirus, and neutralization assays utilizing recombinant SARS-CoV-2 S glycoprotein receptor binding site, receptor-binding domain. As a standard neutralization assay, the plaque reduction neutralization test (PRNT) requires isolation and propagation of live pathogenic SARS-CoV-2 virus conducted in a BSL-3 containment. Hence, other surrogate neutralization assays relevant to the PRNT play important alternatives that offer better safety besides facilitating high throughput analyses. This review discusses the current neutralization assay platforms used to evaluate nAbs, their techniques, advantages, and limitations.

The Effect of Vit-D Supplementation on the Side Effect of BioNTech, Pfizer Vaccination and Immunoglobulin G Response Against SARS-CoV-2 in the Individuals Tested Positive for COVID-19: A Randomized Control Trial

  • Hawal Lateef Fateh;Goran Kareem;Shahab Rezaeian;Jalal Moludi;Negin Kamari
    • Clinical Nutrition Research
    • /
    • v.12 no.4
    • /
    • pp.269-282
    • /
    • 2023
  • Vitamin D participates in the biological function of the innate and adaptive immune system and inflammation. We aim to specify the effectiveness of the vitamin D supplementation on the side effects BioNTech, Pfizer vaccination, and immunoglobulin G response against severe acute respiratory syndrome coronavirus 2 in subjects tested positive for coronavirus disease 2019 (COVID-19). In this multi-center randomized clinical trial, 498 people tested positive for COVID-19 were divided into 2 groups, receiving vitamin D capsules or a placebo (1 capsule daily, each containing 600 IU of vitamin D) over 14-16 weeks. Anthropometric indices and biochemical parameters were measured before and after the second dose of vaccination. Fourteen to 16 weeks after supplementation, the intervention group had an immunoglobulin G (IgG) increase of 10.89 ± 1.2 g/L, while the control group had 8.89 ± 1.3 g/L, and the difference was significant between both groups (p = 0.001). After the second dose of vaccination, the supplement group significantly increased their 25-hydroxy vitamin D from initially 28.73 ± 15.6 ng/mL and increased to 46.48 ± 27.2 ng/mL, and the difference between them was significant. Those with a higher body mass index (BMI) had the most of symptoms, and the difference of side effects according to BMI level was significantly different. In 8 weeks after supplementation obese participants had the lowest IgG levels than overweight or normal subjects. The proportion of all types of side effects on the second dose was significantly diminished compared with the first dose in the intervention group. Supplementation of 600 IU of vitamin D3 can reduce post-vaccination side effects and increase IgG levels in participants who received BioNTech, Pfizer vaccine.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Immunogenicity of the ChAdOx1 nCoV-19 vaccine in patients with hematologic malignancies

  • Chayapa Thookhamme;Manassamon Navinpipat;Aimwipa Sasakul;Pakthipa Pattarakosol;Kamoltip Lertchaisataporn;Kriangkrai Tawinprai;Pannee Praditsuktavorn
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.107-115
    • /
    • 2023
  • Purpose: The present study aimed to study the immunogenicity of the ChAdOx1 nCoV-19 vaccine in patients with hematologic malignancies. Materials and Methods: This prospective cohort study of hematology patients aimed to evaluate their antibody levels against the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and seroconversion rates following two doses of the ChAdOx1 nCoV-19 vaccine. Between June and July 2021, we enrolled 61 patients and included 44 patients in our analysis. Antibody levels were assessed 8 and 4 weeks after the first and second injections, respectively, and compared with those of a healthy group. Results: Eight weeks after the first dose, the geometric mean antibody level was 1.02 binding antibody units (BAU)/mL in the patient group and 37.91 BAU/mL in the healthy volunteer group (p<0.01). Four weeks after the second dose, the geometric mean antibody level was 9.44 BAU/mL in patients and 641.6 BAU/mL in healthy volunteers (p<0.01). The seroconversion rates 8 weeks after the first dose were 27.27% and 98.86% in the patient and healthy volunteer groups, respectively (p<0.001). The seroconversion rate 4 weeks after the second dose was 47.73% in patients and 100% in healthy volunteers. Factors leading to lower seroconversion rates were rituximab therapy (p=0.002), steroid therapy (p<0.001), and ongoing chemotherapy (p=0.048). Factors that decreased antibody levels were hematologic cancer (p<0.001), ongoing chemotherapy (p=0.004), rituximab (p<0.001), steroid use (p<0.001), and absolute lymphocyte count <1,000/mm3 (p=0.009). Conclusion: Immune responses were impaired in individuals with hematologic malignancies, particularly patients undergoing ongoing therapy and B-cell-depleting therapy. Additional vaccinations should be considered for these patients, and further investigated.

Anti-SARS-CoV-2 receptor binding domain antibodies after the second dose of Sinovac and AstraZeneca vaccination

  • Marisca Evalina Gondokesumo;Anita Purnamayanti;Puri Safitri Hanum;Winnie Nirmala Santosa;Ardyan Prima Wardhana;Christina Avanti
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.224-231
    • /
    • 2023
  • Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.

Humoral immune response to SARS-CoV-2 mRNA vaccines is associated with choice of vaccine and systemic adverse reactions

  • Hanna Klingel;Alexander Kruttgen;Matthias Imohl;Michael Kleines
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.1
    • /
    • pp.60-69
    • /
    • 2023
  • Purpose: Although the fast development of safe and effective messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 has been a success, waning humoral immunity has led to the recommendation of booster immunization. However, knowledge of the humoral immune response to different booster strategies and the association with adverse reactions is limited. Materials and Methods: We investigated adverse reactions and anti-spike protein immunoglobulin G (IgG) concentrations among health care workers who received primary immunization with mRNA-1273 and booster immunization with mRNA-1273 or BNT162b2. Results: Adverse reactions were reported by 85.1% after the first dose, 94.7% after the second dose, 87.5% after a third dose of BNT162b2, and 86.0% after a third dose of mRNA-1273. They lasted for a median of 1.8, 2.0, 2.5, and 1.8 days, respectively; 6.4%, 43.6%, and 21.0% of the participants were unable to work after the first, second, and third vaccination, respectively, which should be considered when scheduling vaccinations among essential workers. Booster immunization induced a 13.75-fold (interquartile range, 9.30-24.47) increase of anti-spike protein IgG concentrations with significantly higher concentrations after homologous compared to heterologous vaccination. We found an association between fever, chills, and arthralgia after the second vaccination and anti-spike protein IgG concentrations indicating a linkage between adverse reactions, inflammation, and humoral immune response. Conclusion: Further investigations should focus on the possible advantages of homologous and heterologous booster vaccinations and their capability of stimulating memory B-cells. Additionally, understanding inflammatory processes induced by mRNA vaccines might help to improve reactogenicity while maintaining immunogenicity and efficacy.

Changes in SARS-CoV-2 antibody titers 6 months after the booster dose of BNT162b2 COVID-19 vaccine among health care workers

  • Takeshi Mochizuki;Takaki Hori;Koichiro Yano;Katsunori Ikari;Ken Okazaki
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.116-120
    • /
    • 2023
  • Purpose: In Japan, the data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers after the booster dose of the coronavirus disease 2019 (COVID-19) vaccine are insufficient. The aim of this study is to evaluate changes in SARS-CoV-2 antibody titers before, 1, 3, and 6 months after the booster dose of the BNT162b2 COVID-19 vaccine among health care workers. Materials and Methods: A total of 268 participants who received the booster dose of the BNT162b2 vaccine were analyzed. SARS-CoV-2 antibody titers were measured before (baseline) and at 1, 3, and 6 months after the booster dose. Factors associated with changes in SARS-CoV-2 antibody titers at 1, 3, and 6 months were analyzed. Cutoff values at baseline were calculated to prevent infection of the omicron variant of COVID-19. Results: The SARS-CoV-2 antibody titers at baseline, and 1, 3, and 6 months were 1,018.3 AU/mL, 21,396.5 AU/mL, 13,704.6 AU/mL, and 8,155.6 AU/mL, respectively. Factors associated with changes in SARS-CoV-2 antibody titers at 1 month were age and SARS-CoV-2 antibody titers at baseline, whereas changes in SARS-CoV-2 antibody titers at 3 and 6 months were associated with the SARS-CoV-2 antibody titers at 1 month. The cutoff values of the SARS-CoV-2 antibody titers at baseline were 515.4 AU/mL and 13,602.7 AU/mL at baseline and 1 month after the booster dose, respectively. Conclusion: This study showed that SARS-CoV-2 antibody titers increase rapidly at 1 month after the booster dose of the BNT162b2 vaccine and begin to decrease from 1 to 6 months. Hence, another booster may be needed as soon as possible to prevent infection.

Pregnant women's knowledge about and beliefs toward COVID-19 vaccine: a cross-sectional study

  • Osman Samet Gunkaya;Arzu Bilge Tekin;Murat Yassa;Oguz Arslan;Kubra Karakoc;Nesibe Demirtas;Canberk Usta;Cigdem Kunt Isguder;Niyazi Tug
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.134-142
    • /
    • 2023
  • Purpose: The aim of this study was to determine the scope of knowledge, attitudes, and behaviors of pregnant women about the coronavirus disease 2019 (COVID-19) vaccine. Materials and Methods: A total of 886 pregnant women were recruited for the study. A cross-sectional questionnaire was conducted on these selected participants. Data about past infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV-2 infection of closely related people, and deaths due to COVID-19 among their relatives were questioned. Results: The rate of vaccination was higher (64.1%) in pregnant women with higher education levels. Informing about the vaccine, especially by health professionals, showed that the rates of vaccination (25%) increased (p<0.001). In addition, a significant increase was observed in vaccination rates with increasing age and financial income (p<0.001). Conclusion: The main limitation of our study is that the vaccine, which was approved for "emergency use", was just started to be administered to pregnant women during the study. Our findings show that our target audience, low-income, low-education, younger pregnant women should be given more attention than those who apply to the doctor for routine follow-up.