• Title/Summary/Keyword: Several Oxidants

Search Result 44, Processing Time 0.029 seconds

Synthetic Method of Aspartame via Oxidative Deformylation of N-Formyl Aspartame (N-포밀 아스파르테임의 산화 탈포밀 반응에 의한 아스파르테임의 제조 방법)

  • Park, Dong-Hyun;Lee, Yoon-Sik
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-99
    • /
    • 1990
  • For-${\alpha}$-APM was efficiently prepared by the reaction of For-Asp anhydride and Phe-OMe in methylethylketone, $CH_3CN$, and in water. The selective recovery of For-${\alpha}$-APM from the resulting For-${\alpha}$-APM and For-${\beta}$-APM mixture was possible via repetitive extraction at constant pH of 4.00. The oxidative deformylation was successfully performed by using several oxidants including $H_2_O2$/THF, sodium percarbonate, and $H_2_O2$/HCl/MeOH giving APM in high yields. The efficiency of the oxidative deformylation was raised in acidic condition for all the deformylation reactions.

  • PDF

Study on the Generation of Chemically Active Species Using Gas-liquid Mixing Plasma Discharging System (기-액 혼합 플라즈마 방전 시스템에서 화학적 활성종의 생성)

  • Kim, DongSeog;Park, YoungSeek
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.394-402
    • /
    • 2014
  • High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and oxygen flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the 2nd voltage (4 kV to 15 kV) was increase, RNO degradation was increased and, generated $H_2O_2$ and $O_3$ concentration were increased. The conductivity of the solution was not influencing the RNO degradation, $H_2O_2$ and $O_3$ generation. The pH effect on RNO degradation was not high. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.

Improvement of Indoor Air Quality by Coating of Indoor Materials of $TiO_2$ Photocatalyst Sol (이산화티탄 광촉매 졸(sol)의 실내환경 코팅에 의한 실내공기질 개선)

  • 양원호;김대원;정문호;양진섭;박기선
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.92-97
    • /
    • 2004
  • Three methods for VOCs emissions control in indoor air are reduction at the source, ventilation between indoor and outdoor, and removal. The best alternative should be to replace highly emitting sources with sources having low emissions, but the pertinent information on VOCs is not always available from manufactures. Other ways of improving indoor air quality are needed. It is to increase the outside fresh-air flow to dilute the pollutants, but this method would generally provide only a dilution effect without destruction in residence. An ideal alternative to existing technologies would be a chemical oxidation process able to treat large volumes of slightly contaminated air at normal temperature without additional oxidant such as ozone generator and ion generator. Photocatalytic oxidation(PCO) represents such a process. It is characterized by a surface reaction assisted by light radiation inducing the formation of superoxide, hydroperoxide anions, or hydroxyl radicals, which are powerful oxidants. In comparison with other VOCs removal methods, PCO offers several advantages. The purpose of this study was to explore the possibilities for photocatalytic purification of slightly contaminated indoor air by using visible light such as flurescent visible light(FVL). In this study, a PCO of relatively concentrated benzene using common FVL lamps was investigated as batch type and total volatile organic compounds(TVOCs) using a common FVL lamp and penetrated sun light over window. The results of this study shown the possibility of TiO$_2$ photocatalyst application in the area of indoor air quality control.

Anti-oxidative and immune-regulative Effects of Electro-acupuncture at SP6 in Aged Rats (삼음교(三陰交) 전침이 노화과정 흰쥐의 항산화능 및 면역능에 미치는 영향)

  • Song, Jong-Keun;Lee, Byung-Ryul;Yang, Gi-Young;Jeon, Ju-Hyun;Yim, Yun-Kyoung
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.87-106
    • /
    • 2010
  • Objective & Methods: The purpose of this study is to investigate the anti-oxidative and immuneregulative effects of electro-acupouncture(EA) at SP6(Sameumgyo) in aged rats. The author performed several experimental items including blood cell counts, blood chemistry, measurement of various oxidants and antioxidants in liver and spleen, analysis of various cytokines in spleen. The results are as follows. Results: 1. EA at SP6 significantly reduced the number of platelets in blood. 2. EA at SP6 significantly reduced NO concentration and significantly increased catalase activity in liver. 3. EA at SP6 significantly reduced NO concentration and significantly increased SOD activity, catalase activity and glutathione concentration in spleen. 4. EA at SP6 restored the increase of IL-4, IL-6 and the decrease of IFN-$\gamma$ in aged rat spleen. Conclusion: According to these results, it is postulated that EA at SP6 has an antioxidative effect through increasing the activities of antioxidative enzymes and inhibiting production of oxidized substances, as well as an immune regulative effect in aging process. In consequence, it is presumed that EA at SP6 may have an anti-aging effect.

Identification of Jet fuel (JP-8) in Petroleum Hydrocarbon Contaminated Soil through the Qualitative Analysis of Antioxidants (유류 오염 토양 중 산화방지제 정성 분석을 통한 항공유(JP-8) 유종 판별)

  • Kim, Yonghun;Lee, Goontaek;Jang, Hanjeon;Jo, Yunju;Kim, Moongun;Choi, Jaeho;Kang, Jiyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.37-48
    • /
    • 2022
  • Accurate analysis of petroleum hydrocarbons in soil is an important prerequisite for proper source tracking of contamination. Identification of petroleum compounds is commonly carried out by peak pattern matching in gas chromatography. However, this method has several technical limitations, especially when the soils underwent biological, physical and chemical transformation. For instance, it is very difficult to distinguish jet fuel (JP-8) from kerosene because JP-8 is derivatized from secondary reaction between chemical agents (e.g. anti-oxidants, antifreezer and so on) and kerosene. In this study, an alternative method to separately analyze JP-8 and kerosene in the petroleum hydrocarbon contaminated soil was proposed. Qualitative analyses were performed for representative phenolic antioxidants [2,6-di-tert-butyl phenol (2,6-DTBP), 2,4-di-tert- butylphenol(2,4-DTBP), 2,6-di-tert-butyl-4-methyl phenol (2,6-DTBMP)] using a two dimensional gas chromatograph mass spectrometer (2D GC×GC-TOF-MS). This qualitative analysis of antioxidants in soil would be a useful complementary tool for the peak pattern matching method to identify JP-8 contamination in soil.

Implications of Deep Nitrite in the Ulleung Basin (울릉 분지 저층수의 아질산염)

  • Lee, Tong-Sup;Kim, Il-Nam;Kang, Dong-Jin;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.239-243
    • /
    • 2007
  • Presence of bottom water nitrite in the Ulleung Basin was remarkable because it is totally unexpected phenomenon at such an oxygen-rich environment. Yet no scientific explanation was set forward. Of several plausible explanations, following the Ockham's suggestion, a leaching of nitrite as an intermediate product of denitrification in the top sediment at the slope is most agreeable to given environmental settings. There seems no complementary process to make up the loss of N in the Ulleung Basin, which seems contribute to the characteristically low N:P ratio in the deep waters. If warming proceeds that weakens the thermohaline circulation, a current biological pump may stall and the phytoplankton assemblage might replaced drastically. If so this will pause an utmost challenge to the ecosystem of the East/Japan Sea. Still there remains a contradictory sedimentary signature that requests further explanation regarding the N (or organic C)-cycle such as extraordinarily high organic carbon content despite abundant oxidants in the overlying waters.

Effect of Iron Activators on the Persulfate Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils (다환방향족 탄화수소(PAHs) 오염토양의 과황산 산화 시 철 활성화제의 영향)

  • Choi, Jiyeon;Park, Jungdo;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.62-73
    • /
    • 2020
  • PAHs commonly found in industrial sites such as manufactured gas plants (MGP) are potentially toxic, mutagenic and carcinogenic, and thus require immediate remediation. In-situ chemical oxidation (ISCO) is known as a highly efficient technology for soil and groundwater remediation. Among the several types of oxidants utilized in ISCO, persulfate has gained significant attention in recent years. Peroxydisulfate ion (S2O82-) is a strong oxidant with very high redox potential (E0 = 2.01 V). When mixed with Fe2+, it is capable of forming the sulfate radical (SO4) that has an even higher redox potential (E0 = 2.6 V). In this study, the influence of various iron activators on the persulfate oxidation of PAHs in contaminated soils was investigated. Several iron sources such as ferrous sulfate (FeSO4), ferrous sulfide (FeS) and zero-valent iron (Fe(0)) were tested as a persulfate activator. Acenaphthene (ANE), dibenzofuran (DBF) and fluorene (FLE) were selected as model compounds because they were the dominant PAHs found in the field-contaminated soil collected from a MGP site. Oxidation kinetics of these PAHs in an artificially contaminated soil and the PAH-contaminated field soil were investigated. For all soils, Fe(0) was the most effective iron activator. The maximum PAHs removal rate in Fe(0)-mediated reactions was 92.7% for ANE, 83.0% for FLE, and 59.3% for DBF in the artificially contaminated soil, while the removal rate of total PAHs was 72.7% in the field-contaminated soil. To promote the iron activator effect, the effects of hydroxylamine as a reducing agent on reduction of Fe3+ to Fe2+, and EDTA and pyrophosphate as chelating agents on iron stabilization in persulfate oxidation were also investigated. As hydroxylamine and chelating agents (EDTA, pyrophosphate) dosage increased, the individual PAH removal rate in the artificially contaminated soil and the total PAHs removal rate in the field-contaminated soil increased.

Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes (오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리)

  • Jun, Jun Chul;Kwon, Tae Ouk;Moon, Il Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.298-303
    • /
    • 2007
  • Several combinations of ozone based advanced oxidation processes were tested for the treatment of red water (RW) containing recalcitrant chemical pollutants produced from 2,4,6-trinitrotoluene (TNT) manufacturing process. $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested for the treatment of RW. The order of organic and color removal efficiency was found to be : $O_3{\leq}UV/O_3$ < $UV/O_3/H_2O_2$ < $UV/O_3/H_2O_2/Fe^{2+}$. The optimum conditions for the removal of organic and color in the $UV/O_3/H_2O_2/Fe^{2+}$ process were 0.053 g/min of ozone flow rate, 10 mM of $H_2O_2$ concentration and 0.1 mM of $FeSO_4$ concentration. Organic and color removal efficiencies were 96 and 100 % respectively in the $UV/O_3/H_2O_2/Fe^{2+}$ process. tert-butyl alcohol (t-buOH) was used as the hydroxyl radical scavenger. Enhancement of hydroxyl radical production was achieved by the combination of ozone with several oxidants such as UV, $H_2O_2$, $Fe^{2+}$.

Effects of Extraction Method on Anserine, Protein, and Iron Contents of Salmon (Oncorhynchus keta) Extracts (연어(Oncorhynchus keta) 추출물 중의 Anserine, 단백질 및 철분 함량에 미치는 추출방법의 영향)

  • Min, Hye-Ok;Park, In-Myoung;Song, Ho-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.220-228
    • /
    • 2017
  • Effects of extraction methods on reducing concentrations of pro-oxidants (total iron and protein) of salmon was determined. For development of the extraction process, the effectiveness of several extraction methods was determined and compared, including heat treatment (60, 80, and $100^{\circ}C$), ion exchange and carboxymethyl (CM)-cellulose column chromatography, and ultrafiltration (UF). Protein, total iron, and anserine contents of salmon extracts were 23.64 mg/mL, $16.20{\mu}g/mL$, and 5.47 mg/mL in non-heated extracts, 7.40 mg/mL, $2.32{\mu}g/mL$, and 5.20 mg/mL in heated extracts at $60^{\circ}C$, 7.64 mg/mL, $1.20{\mu}g/mL$, and 5.21 mg/mL at $80^{\circ}C$, and 7.04 mg/mL, $0.68{\mu}g/mL$, and 4.04 mg/mL at $100^{\circ}C$, respectively. Heating and UF decreased contents of protein and total iron, whereas only UF slightly decreased anserine content. Application of the primary ion exchange method increased the content of anserine up to 16%. Protein and total iron contents by the primary ion exchange method decreased by 70 and 98%, respectively. Secondary ion exchange (CM-cellulose) treatment after primary ion exchange and UF resulted in lower anserine content than the primary ion exchange method. However, the content of impurities (protein, total iron) was lower than in all other salmon extracts. Therefore, primary ion exchange, UF, and secondary ion exchange method were the best extraction processes in this study.

Functional Bioactive Compounds and Biological Activities of Vaccinium oldhamii (정금나무의 기능성 생리활성 물질과 생리활성)

  • Chae, Jung-Woo;Jo, Huiseon
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • In modern society, interest in antioxidants is increasing as the stress caused by oxidants increases. However, the demand for synthetic antioxidants is decreasing because some studies have confirmed that they are harmful when consumed in large quantities; thus, studies on antioxidants derived from natural substances are actively being conducted to replace synthetic antioxidants. Blueberry, known as one of the world's top ten long-lived foods, is a plant of the Vaccinium (Ericaceae) family, and various pharmacological activities of blueberry including antioxidant activity have been studied. Vaccinium oldhamii (VO) is a deciduous broad-leaved shrub in the same genus as blueberries, and in this paper, we summarize the studies on the efficacy analysis of VO extracts and purified products. The content of phenolic compounds in VO fruits was proportional to antioxidant and anti-influenza activity such as the inhibition of NO production, and the total content of polyphenols and anthocyanin was higher than that in blueberries. VO fruit extracts showed anti-inflammatory activity and anti-cancer activity against human acute leukemia; in contrast, VO branch extracts showed anti-inflammatory activity, activity to inhibit osteoclast differentiation and bone resorption due to inflammatory response, and anti-cancer activity against several human cancer cell lines. Compared to blueberries, VO showed higher phenolic compound content, antioxidant activity, and various physiological activities. In addition, VO is considered to have sufficient value as an alternative crop to blueberries, such as it can be grown natively in Korea, with simple mass cultivation and no need to pay royalties for commercialization.