• Title/Summary/Keyword: Setup Times

Search Result 190, Processing Time 0.029 seconds

Effects of radish powder concentration and incubation time on the physicochemical characteristics of alternatively cured pork products

  • Bae, Su Min;Choi, Jae Hyeong;Jeong, Jong Youn
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.922-932
    • /
    • 2020
  • Previous research has indicated that radish powder could be a suitable replacement for chemical nitrite sources in alternatively cured meat products. However, the effects of radish powder level on the physicochemical properties of cured meat have not been systematically studied. In this study, we aimed to investigate the effects of varying concentrations of radish powder and incubation time on the physicochemical properties and cured meat pigments of alternatively cured meat products. We divided our experimental setup into seven groups with different radish powder concentrations and incubation times: control (0.01% sodium nitrite), treatment 1 (0.15% radish powder and 2 h incubation), treatment 2 (0.15% radish powder and 4 h incubation), treatment 3 (0.30% radish powder and 2 h incubation), treatment 4 (0.30% radish powder and 4 h incubation), treatment 5 (0.30% celery powder and 2 h incubation), and treatment 6 (0.30% celery powder and 4 h incubation). The cooking yield, CIE a* values (redness), and total pigment levels were not significantly different (p > 0.05) between any of the alternatively cured treatments and the control. However, when 0.30% radish powder or celery powder was added to the products, the CIE b* values increased significantly (p < 0.05) with incubation time. At the same vegetable concentration, the nitrite content, nitrosyl hemochrome, and curing efficiency also increased significantly (p < 0.05) as the incubation time increased from 2 to 4 h, regardless of the types of vegetable powder. Among the meat products cured with radish powder, treatment 4 showed the highest increase in residual nitrite content, nitrosyl hemochrome content, and curing efficiency, but showed decreased lipid oxidation. Our results suggest that increased concentrations of radish powder and longer incubation times would be more suitable for producing alternatively cured meat products comparable to traditionally cured products treated with synthetic nitrite.

Evaluation of Beam Modeling Using Collapsed Cone Convolution Algorithm for Dose Calculation in Radiation Treatment Planning System (방사선치료계획시스템의 Collapsed Cone Convolution 선량계산 알고리듬을 이용한 빔 모델링의 정확성 평가)

  • Jung, Joo-Young;Cho, Woong;Kim, Min-Joo;Lee, Jeong-Woo;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.188-198
    • /
    • 2012
  • This study aims to evaluate the accuracy of the collapsed cone convolution (CCC) algorithm for dose calculation in a treatment planning system (TPS), CorePLAN$^{TM}$. We implemented beam models for various setup conditions in TPS and calculated radiation dose using CCC algorithm for 6 MV and 15 MV photon beam in $50{\times}50{\times}50cm^3$ water phantom. Field sizes were $4{\times}4cm^2$, $6{\times}6cm^2$, $10{\times}10cm^2$, $20{\times}20cm^2$, $30{\times}30cm^2$ and $40{\times}40cm^2$ and each case was classified as open beam cases and wedged beam cases, respectively. Generated beam models were evaluated by comparing calculated data and measured data of percent depth dose (PDD) and lateral profile. As a result, PDD showed good agreement within approximately 2% in open beam cases and 3% in wedged beam cases except for build-up region and lateral profile also correspond within approximately 1% in field and 4% in penumbra region. On the other hand, the discrepancies were found approximately 4% in wedged beam cases. This study has demonstrated the accuracy of beam model-based CCC algorithm in CorePLAN$^{TM}$ and the most of results from this study were acceptable according to international standards. Although, the area with large dose difference shown in this study was not significant region in clinical field, the result of our study would open the possibility to apply CorePLAN$^{TM}$ into clinical field.

Comparison and Analysis of Photon Beam Data for Hospitals in Korea and Data for Quality Assurance of Treatment Planning System (국내 의료기관들의 광자 빔 데이터의 비교 분석 및 치료계획 시스템 정도관리자료)

  • Lee, Re-Na;Cho, Byung-Chul;Kang, Sei-Kwon
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • Purpose: Photon beam data of linear accelerators in Korea are collected, analyzed, and a simple method for checking and verifying the dose calculations in a TPS are suggested. Materials and Methods: Photon beam data such as output calibration condition, output factor, wedge factor, percent depth dose, beam profile, and beam quality were collected from 26 institutions in Korea. In order to verify the accuracy of dose calculation, ten sample planning tests were peformed. These Include square, elongated, and blocked fields, wedge fields, off-axis dose calculation, SSD variation. The planned data were compared to that of manual calculations. Results: The average and standard deviation of photon beam quality for 6, 10, and 15 MV were $0.576{\pm}0.005,\;0.632{\pm}0.004,\;and\;0.647{\pm}0.006$, respectively. The output factors of 6 MV photon beam measured at depth of dose maximum for $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.944{\pm}0.006,\;1.031{\pm}0.006,\;and\;1.055{\pm}0.007$. For 10 MV photon beam, the values were $0.935{\pm}0.006,\;1.031{\pm}0.007,\;1.054{\pm}0.0005$. The collected data were not enough to calculate average, the output factors for 15MV photon beam with field size of $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.941{\pm}0.008,\;1.032{\pm}0.004,\;1.049{\pm}0.014$. There was seven institutions $e{\times}ceeding$ tolerance when monitor unit values calculated from treatment planning system and manually were compared. The measured average MU values for the machines calibrated at SAD setup were 3 MU and 5 MU higher than the machines calibrated at SSD for 6 MV and 10 MV, respectively except the wedge case. When the wedges were inserted, the MU values to deliver 100 cGy to 5 cm depends on manufactures. When the same wedge angle was used, Siemens machine requires more MUs then Varian machine. Conclusion: In this study, photon beam data are collected and analyzed to provide a baseline value for chocking beam data and the accuracy of dose calculation for a treatment planning system.

  • PDF

Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis (음경암의 방사선치료 시 자체 제작한 Device의 산란선 차폐 효과에 대한 유용성 평가)

  • Gim, Yang-Soo;Lee, Sun-Young;Lim, Suk-Gun;Gwak, Geun-Tak;Pak, Ju-Gyeong;Lee, Seung-Hoon;Hwang, Ho-In;Cha, Seok-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Purpose: We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. Materials and Methods: The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. $3{\times}3\;cm^2$, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$, $6{\times}6\;cm^2$, $7{\times}7\;cm^2$ field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. Results: The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with $3{\times}3\;cm^2$, 15.7-5.2 cGy with $4{\times}4\;cm^2$, 17.6-5.5 cGy with $5{\times}5\;cm^2$, 19.9-6.6 cGy with $6{\times}6\;cm^2$, 22.2-7.6 cGy with $7{\times}7\;cm^2$ and the measured dose without lead shielding were 7.1-2.6 cGy with $3{\times}3\;cm^2$, 8.9-3.6 cGy with $4{\times}4\;cm^2$, 12.3-4.8 cGy with $5{\times}5\;cm^2$, 14.6-5.0 cGy with $6{\times}6\;cm^2$ and 21.1~6.4 cGy with $7{\times}7\;cm^2$. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with $3{\times}3\;cm^2$, 6.9-1.6 cGy with $4{\times}4\;cm^2$, 5.3-0.8 cGy with $5{\times}5\;cm^2$, 5.3-1.5 cGy with $6{\times}6\;cm^2$ and 1.1-1.8 cGy with $7{\times}7\;cm^2$. Conclusion: Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance between the testicles and penis.

  • PDF

Characteristics of A Diaphragm-Type Fiber Optic Fabry-Perot Interferometric Pressure Sensor Using A Dielectric Film (유전체 박막을 이용한 다이아프램형 광섬유 Fabry-Perot 간섭계 압력센서의 특성)

  • Kim, M.G.;Yoo, Y.W.;Kwon, D.H.;Lee, J.H.;Kim, J.S.;Park, J.H.;Chai, Y.Y.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.147-153
    • /
    • 1998
  • The strain characteristics of a fiber optic Fabry-Perot pressure sensor with high sensitivity using a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ (N/O/N) diaphragm is experimentally investigated. A 600 nm thick N/O/N diaphragm was fabricated by silicon anisotropic etching technology in 44 wt% KOH solution. An interferometric fiber optic pressure sensor has been manufactured by using a fiber optic Fabry-Perot intereferometer and a N/O/N diaphragm. The 2 cm length fiber optic Fabry-Perot interferometers in the continuous length of single mode fiber were produced with two pieces of single mode fiber coated with $TiO_{2}$ dielectric film utilizing the fusion splicing technique. The one end of the fiber optic Fabry-Perot interferometer was bonded to a N/O/N diaphragm. and the other end was connected to an optical setup through a 3 dB coupler. For the N/O/N diaphragm sized $2{\times}2\;mm^{2}$ and $8{\times}8\;mm^{2}$, the pressure sensitivity was measured 0.11 rad/kPa and 1.57 rad/kPa, respectively, and both of the nonlinearities were less than 0.2% FS.

  • PDF

A of Radiation Field with a Developed EPID

  • Y.H. Ji;Lee, D.H.;Lee, D.H.;Y.K. Oh;Kim, Y.J.;C.K. Cho;Kim, M.S.;H.J. Yoo;K.M. Yang
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.67-67
    • /
    • 2003
  • It is crucial to minimize setup errors of a cancer treatment machine using a high energy and to perform precise radiation therapy. Usually, port film has been used for verifying errors. The Korea Cancer Center Hospital (KCCH) has manufactured digital electronic portal imaging device (EPID) system to verify treatment machine errors as a Quality Assurance (Q.A) tool. This EPID was consisted of a metal/fluorescent screen, 45$^{\circ}$ mirror, a camera and an image grabber and could display the portal image with near real time KIRAMS has also made the acrylic phantom that has lead line of 1mm width for ligh/radiation field congruence verification and reference points phantom for using as an isocenter on portal image. We acquired portal images of 10$\times$10cm field size with this phantom by EPID and portal film rotating treatment head by 0.3$^{\circ}$, 0.6$^{\circ}$ and 0.9$^{\circ}$. To check field size, we acquired portal images with 18$\times$18cm, 19$\times$19cm and 20$\times$20cm field size with collimator angle 0$^{\circ}$ and 0.5$^{\circ}$ individually. We have performed Flatness comparison by displaying the line intensity from EPID and film images. The 0.6$^{\circ}$ shift of collimator angle was easily observed by edge detection of irradiated field size on EPID image. To the extent of one pixel (0.76mm) difference could be detected. We also have measured field size by finding optimal threshold value, finding isocenter, finding field edge and gauging distance between isocenter and edge. This EPID system could be used as a Q.A tool for checking field size, light/radiation congruence and flatness with a developed video based EPID.

  • PDF

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

A Study of the Effect of Learning Processes on Decision Making Performance of IT Consultants (학습프로세스가 IT 컨설턴트의 의사결정 성과에 미치는 영향에 관한 연구)

  • Nah, Jung-Ok;Yim, Myung-Seong
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2013
  • For the successful implementation of IT projects, individual consultant's competency in the project is very important. Especially, 3 key factors which are 1) Learning-by-Doing, 2) Learning-from-Others, and 3) Learning-by-Investment with individual consultant's competency, are required for solving various critical issues which can be occurred during implementing IT project. The objective of this research is to examine the effects of these learning processes on decision performance of consultants. Prior to setup the research model, we conducted 3 times in-depth interviews with IT consultants who have over 20 years IT project experiences. Through interviews with IT project expert, we tried to validate our research model and develop survey questionnaires. Over 100 consultants, who are working at SI companies those of Samsung SDS, LG CNS, SK C&C and other small SI companies, were participated to survey. In the contrary of our thoughts before conducted experiment, we got the interesting result from pilot experiment. Most influenced learning process was Learning-by-Doing and less influenced learning process was Learning-from-Others.

Analysis of the Effect of Particle Size and Humidity on Reaction Characteristics of $CaCO_3$ Sorbent Particle under Air and $O_2/CO_2$ Atmospheric Conditions (공기연소 분위기와 순산소 연소 분위기에서 입자 크기와 습도가 $CaCO_3$ 흡착제 입자의 반응특성에 미치는 영향 분석)

  • Jeong, Seongha;Lee, Kang Soo;Keel, Sangin;Yun, Jin Han;Kim, Sang Soo
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • It is necessary to find out the reaction characteristics of $CaCO_3$ sorbent particles in air and $O_2/CO_2$ atmospheric conditions in order that an in-furnace desulfurization technique can be applied to oxy-fuel combustion system. In this study, rate of change of GMD(geometric mean diameter) and specific surface area of $CaCO_3$ sorbent particles reacted in DTF(drop tube furnace) experimental setup were analyzed to investigate the effect of particle size and humidity on the reaction characteristics of them. In air atmospheric condition, calcination process occurs actively within shorter residence times as the particle size increases. On the contrary, in $O_2/CO_2$ atmospheric condition, a calcination process is delayed as particle size increases. The increment of humidity accelerates calcination process in an air atmospheric condition and increase rate of calcination in an $O_2/CO_2$ atmospheric condition.

Enhancement of Sampling Based DDoS Detecting System for SDN (소프트웨어 정의 네트워크를 위한 샘플링 기반 서비스거부공격 탐지 시스템 개선)

  • Nguyen, Sinhngoc;Choi, Jintae;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.315-318
    • /
    • 2017
  • Nowadays, Distributed Denial of Service (DDoS) attacks have gained increasing popularity and have been a major factor in a number of massive cyber-attacks. It could easily exhaust the computing and communicating resources of a victim within a short period of time. Therefore, we have to find the method to detect and prevent the DDoS attack. Recently, there have been some researches that provide the methods to resolve above problem, but it still gets some limitations such as low performance of detecting and preventing, scope of method, most of them just use on cloud server instead of network, and the reliability in the network. In this paper, we propose solutions for (1) handling multiple DDoS attacks from multiple IP address and (2) handling the suspicious attacks in the network. For the first solution, we assume that there are multiple attacks from many sources at a times, it should be handled to avoid the conflict when we setup the preventing rule to switches. In the other, there are many attacks traffic with the low volume and same destination address. Although the traffic at each node is not much, the traffic at the destination is much more. So it is hard to detect that suspicious traffic with the sampling based method at each node, our method reroute the traffic to another server and make the analysis to check it deeply.