• Title/Summary/Keyword: Settlement analysis

Search Result 1,505, Processing Time 0.031 seconds

Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil

  • Zou, Jin-Feng;Yang, Tao;Deng, Dong-ping
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • The long-term settlement characteristics for the cast-in-place bored pile in the deep-thick soft soil are investigated by post-grouting field tests. Six cast-in-place bored engineering piles and three cast-in-place bored test piles are installed to study the long-term settlement characteristics. Three post-grouting methods (i.e., post-tip-grouting, post-side-grouting, and tip and side post-grouting) are designed and carried out by field tests. Results of the local test show that decreased settlements for the post-side-grouted pile, the post-tip-grouted pile and the tip and side post-grouted pile are 22.2%~25.8%, 30.10%~35.98% and 32.40%~35.50%, respectively, compared with non-grouted piles. The side friction resistance for non-grouted piles, post-side-grouted pile, post-tip-grouted pile and the tip and side post-grouted pile undertakes 89.6~91.3%, 94.6%, 92.4%~93.0%, 95.7% of the total loading, respectively. At last, the parameters back analysis method and numerical calculation are adopted to predict the long-term settlement characteristics of the cast-in-place bored pile in the deep-thick soft soil. Determined Bulk modulus (K) and a creep parameter (Ks) are used for the back analysis of the long-term settlement of the post-grouted pile. The settlement difference between the back analysis and the measurement data is about 1.11%-7.41%. Long-term settlement of the post-grouted piles are predicted by the back analysis method, and the predicted results show that the settlement of the post-grouted pile are less than 6 mm and will be stable in 30 days.

Prediction of Crest Settlement of Center Cored Rockfill Dam using an Artificial Neural Network Model (인공신경망기법을 이용한 중심차수벽형 석괴댐의 정부침하량 예측)

  • Kim, Yong-Seong;Kim, Bum-Joo;Oh, Sang-Eun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.73-81
    • /
    • 2012
  • In this study, the settlement data of 32 center cored rockfill dams (total 39 monitored data) were collected and analyzed to develop the method to predict the crest settlement of a CCRD after impounding by using the internal settlement data occurred during construction. An artificial neural network (ANN) modeling was used in developing the method, which was considered to be a more reliable approach since in the ANN model dam height, core width, and core type were all considered as input variables in deriving the crest settlement, whereas in conventional methods, such as Clements's method, only dam height is used as a variable. The ANN analysis results showed a good agreement with the measured data, compared to those by the conventional methods using regression analysis. In addition, a simple procedure to use the ANN model for engineers in practice was provided by proposing the equations used for given input values.

A study on the Settlement of Ballasted Track according to Various Rail-Pad Stiffness (레일패드의 강성이 자갈궤도 침하에 미치는 영향 연구)

  • Choi, Jin-Yu;Kim, Eun;Hwang, Man-Ho;Choi, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.249-255
    • /
    • 2010
  • Ballasted track is under the circumstance of repetition of deterioration and recovery. Track deterioration is presented as track irregularity or settlement, and dynamic force subjected to track is one of major cause of the deterioration. The dynamic force is determined from the dynamic interaction between track and vehicle. Rail-pad stiffness is one of the factor affects track dynamic property. In this study, the relationship between rail-pad stiffness and track settlement was investigated. Dynamic forces according to various rail-pad stiffness was obtained from the dynamic vehicle-track interaction analysis using DARTS-NL. Track settlement was calculated by substitution the dynamic forces into various formulas for track settlement. From the result of analysis, it was known that the track settlement is increased about 6% when the rail-pad stiffness rise about twice. And this result leads that there is only a little relationship between rail-pad stiffness and track settlement.

  • PDF

A Study on Determination of the Degree of Consolidation and Time Factor Considering Site Ground Characteristics (현장 지반특성을 고려한 압밀도 및 시간계수 결정에 관한 연구)

  • Choi, Min-Ju;Kim, Hung-Nam;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This study is conducted to minimize the problems caused by the difference between the settlement and settlement time of the one-dimensional consolidation analysis by the Terzaghi's consolidation theory, which is generally used in domestic soft soil design, from the settlement and settlement time measured at the field site. Consolidation-time factor considering the field site characteristics can be determined using the relationship among the degree of consolidation, settlement time, and time factor, the time-settlement curve measured at the field is reverse- analysis using a numerical-analysis technique to reproduce the same consolidation behavior as in the field. Time-settlement and time-excessive pore water pressure data when the same consolidation behavior as the site is reproduced Consolidation-time factor of the soil of Songsan Green City by settlement and excess pore water pressure was calculated using the settlement and excess pore water pressure for each settlement time. If the results of this study use the Terzaghi consolidation-time factor, which does not consider the consolidation characteristics of the soft ground target area, it is difficult to determine the end time of the soft ground during construction. It is necessary to use the established settlement-time factor.

Reliability of Ultimate Settlement Prediction Methods (연약지반 장기 침하량 예측기법의 신뢰성 평가)

  • 우철웅;장병욱;송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.35-41
    • /
    • 1996
  • The theory of consolidation has been achieved remarkable development in terms of theory such as finite consolidation theory, two dimensional Rendulic consolidation theory. Though those theories are well defined, the analysis is by no means straightforward, because associated properties are very difficult to determine in the laboratory, Therefore Terzaghi's one dimensional consolidation theory and Barron's cylindrical consolidation theory are still widely used in engineering practice. The theoretical shortcomings of those consolidation theories and uncertainties of associated properties make inevitably some discrepancy between theoretical and field settlements. Field settlement measurement by settlement plate is, therefore, widely used to overcome the discrepancy. Ultimate settlement is one of the most important factor of embankment construction on soft soils. Nowadays the ultimate settlement prediction methods using field settlement data are widely accepted as a helpful tool for field settlement analysis of embankment construction on soft soils. Among the various methods of ultimate settlement prediction, hyperbolic method and Asaoka's method are most commonly used because of their simplicity and ability to give a reasonable estimate of consolidation settlement. In this paper, the reliability of hyperbolic method and Asaoka's method has been examined using analytical methods. It is shown that both hyperbolic method and Asaoka's method are significantly affected by the direction of drainage.

  • PDF

Settlement Behavior of Wing-wall type Foundation on Soft Grounds (연약지반에서 날개벽 기초의 침하량 산정)

  • Jang, Si-Kyung;Lee, Kwang-Yeol;Hwang, Jae-Hong;Chung, Chin-Gyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1164-1169
    • /
    • 2009
  • Piled raft foundation is commonly used for structure on deep soft soil deposit rather than end bearing piles to control differential settlement. However, it is still expensive for light weight structures. Wing-wall type foundation has been successfully applied to reduce average settlement for light weight structure. This study will further investigate this type of foundation using bench scale experiments on clay and sand. Numerical analysis and approach method are used to verify load settlement curve of wing-wall foundation on experimentally study. Furthermore, normalized settlement curves are applied to define prediction of settlement on wing-wall foundation. In the result settlement on wing-wall foundation can be effectively done by increasing the length of wall instead of number of walls and equation for calculating average settlement can be derived using normalized load settlement curve.

  • PDF

A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method (기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구)

  • Kang, Seyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.29-38
    • /
    • 2019
  • In stability and settlement management of soft ground, the settlement prediction technology has been continuously developed and used to reduce construction cost and confirm the exact land use time. However, the preexistence prediction methods such as hyperbolic method, Asaoka method and Hoshino method are difficult to predict the settlement accurately at the beginning of consolidation because the accurate settlement prediction is possible only after many measurement periods have passed. It is judged as the reason for estimating the future settlement through the proportionality assumption of the slope which the preexistence prediction method computes from the settlement curve. In this study, ARIMA technique is introduced among time series analysis techniques and compared with preexistence prediction methods. ARIMA method was predictable without any distinction of ground conditions, and the results similar to the existing method are predicted early (final settlement).

A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis (역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구)

  • Hwang, Sungpil;Im, Jongchul;Kwon, Jeonggeun;Kang, Yeounike;Joo, Ingon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.5-14
    • /
    • 2010
  • The paper processed settlement analysis using Finite Elements Method(FEM). Because Stress Distribution Ratio has to be decreased, for settlement analysis of soft clay deposit improved by sand compaction piles(SCP). Back analysis was processed comparing the measured settlements of laboratory model tests and finite element analysis where the SCP treated area was assumed as mixed ground with clay deposit rather than being a composite ground. The paper proposes a methodology which employs a compression index($C_c$) for settlement analysis of soft clay deposit improved by sand compaction piles from the back analysis. This approach is applied to a field measurement case(A revetment founded on the SCP improved clay deposit with the replacement ratio of 45%).

A Development of Practical Analysis Method for the Consolidation Settlements (압밀침하 계측분석기법의 개발에 관한 연구)

  • Kim Joon-Seok;Kim Ju-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.141-148
    • /
    • 2005
  • The settlement measured in the field shows a considerable difference from the predicted settlement due to various factors such as nonhomogeneous soft layers, sampling disturbance, erroneous selection of soil parameters and deficiency of consolidation theories among others. Therefore, analysis of actual settlement behavior based on the instrumentation and measurement data during consolidation period is a very useful procedure in evaluating the rates of consolidation settlement. This paper introduces a new practical method of analyzing consolidation settlement behavior, which is generalized and formulated from the existing analysis methods such as Hyperbolic method, Hoshino method and $\sqr{s}$ method. Through case studies, it is shown that the proposed method is a superior technique in reflecting the measured settlement behavior.

Foundation Differential Settlement Included Time-dependent Elevation Control for Super Tall Structures

  • Zhao, Xin;Liu, Shehong
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Due to the time-dependent properties of materials, structures, and loads, accurate time-dependent effects analysis and precise construction controls are very significant for rational analysis and design and saving project cost. Elevation control is an important part of the time-dependent construction control in supertall structures. Since supertall structures have numerous floors, heavy loads, long construction times, demanding processes, and are typically located in the soft coastal soil areas, both the time-dependent features of superstructure and settlement are very obvious. By using the time-dependent coupling effect analysis method, this paper compares Shanghai Tower's vertical deformation calculation and elevation control scheme, considering foundation differential settlement. The results show that the foundation differential settlement cannot be ignored in vertical deformation calculations and elevation control for supertall structures. The impact of foundation differential settlement for elevation compensation and pre-adjustment length can be divided into direct and indirect effects. Meanwhile, in the engineering practice of elevation control for supertall structures, it is recommended to adopt the multi-level elevation control method with relative elevation control and design elevation control, without considering the overall settlement in the construction process.