• Title/Summary/Keyword: Settlement Reduction Factor

Search Result 22, Processing Time 0.027 seconds

The Response of a Single Pile and Pile Groups to Tunnelling Performed in Weathered Rock (풍화암에서 실시된 터널굴착으로 인한 단독말뚝 및 군말뚝의 거동)

  • Lee, Cheol Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.199-210
    • /
    • 2012
  • The effects of tunnelling in weak weathered rock on the behaviour of a pre-existing single pile and pile groups ($3{\times}3$ and $5{\times}5$ pile groups) above a tunnel have been studied by carrying out three-dimensional (3D) elasto-plastic numerical analyses. Numerical modelling of such effects considers the response of the single pile and pile groups in terms of tunnelling-induced ground and pile settlement as well as changes of the shear transfer mechanism at the pile-soil interface due to tunnelling. Due to changes in the relative shear displacement between the pile and the soil at the pile-soil interface with tunnel advancement, the shear stresses and axial pile force distributions along the pile change drastically. Based on the computed results, upward shear stresses are induced up to about Z/L=0.775 from the pile top, while downward shear stresses are mobilised below Z/L=0.775, resulting in a reduction in the axial pile force distribution with depth equivalent to a net increase in the tensile force on the pile. A maximum tensile force of about $0.36P_a$ developed on the single pile solely due to tunnelling, where $P_a$ is the service axial pile loading prior to tunnelling. The degree of interface shear strength mobilisation at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. Overall it has been found that the larger the number of piles, the greater is the effect of tunnelling on the piles in terms of pile settlement, while changes of the axial pile forces for the piles in the groups are smaller than for a single pile due to the shielding effect. The reduction of apparent allowable pile capacity due to tunnelling-induced pile head settlement was significant, in particular for piles inside the groups.

Behaviors of Lightweight Foamed Soils Considering Underwater Curing and Water Pressure Conditions (수중양생 및 수압조건을 고려한 경량기포혼합토의 거동)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2005
  • Lightweight Foamed Soil (LWFS) could be the substitute of normal soils used in backfill to earth structures and embankment materials far soft ground improvement in port and harbor project because of its effectiveness in settlement reduction and earth pressure decrease due to its lightness. A series of triaxial and unconfined compression tests were performed to investigate behaviors of LWFS composed of dredged soils, cement and air foam, and cured at underwater conditions. The density of LWFS will increase if LWFS is cured at underwater conditions because high water pressure makes air foam disappear or demolish during the curing compared with LWFS cured at normal air conditions. This paper is to find the mechanical behaviors of LWFS cured at seawater depth of 5.0 m and 10.0 m, respectively, which simulates underwater curing conditions by underwater pressure simulator chamber developed during this study. In addition, new normalized factor formula, which takes account of mixing design conditions determining compressive strength of LWFS, was proposed to consider mixing design factor fur LWFS.

Analyzing Optimal Economic Fishing Efforts of the Coastal Snow Crab Gillnet Fishery (대게 연안자망어업의 경제적 적정 어구사용량 분석)

  • Kim, Do-Hoon;An, Heui-Chun;Lee, Kyoung-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.39 no.2
    • /
    • pp.25-39
    • /
    • 2008
  • The Korean government is in the establishment process of plan for managing fishing effort by setting up the maximum fishing gear usage per fishery type for the recovery of fishery resources, for the settlement of disputes between fishery sectors over fishing gears, and for the stability of fishing business condition. Especially in the setting up of the maximum fishing gear usage, economic standards as well as biological standards are being considered as a significant factor to promote the sustainable and economically viable development of fisheries. This study is, thus, to analyze the optimal economic fishing gear usage ($E_{MEY}$) as the most economically efficient one for the coastal snow crab gillnet fishery, one of the most controversial sectors in establishing the maximum fishing gear usage. The data of logbooks per trip were used for concentrating on the estimation of $E_{MEY}$ per trip because it was considered there were limitations of data available for analyses. As a finding drawn from the analyses, the optimal economic trap usage ($E_{MEY}$) of coastal snow crab gillnet vessels per trip has to be decreased by about 13%. That is, reducing the trip gillnet usage up to the level of $E_{MEY}$ can lead to the reduction of trip fishing costs, thereby resulting in the increased trip profits.

  • PDF

Research on Reduction and Recycling of Food Waste by Separating Raw Food Waste and Earth Worm Composting in the Apartment (공동주택의 음식물 생쓰레기 분리배출과 지렁이퇴비화를 이용한 음식물쓰레기 감량 및 자원화 모델 연구)

  • Choi, Kwang-Soo
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.137-146
    • /
    • 2011
  • In this research, food waste source reduction model for apartment was investigated. In spite of prohibition of direct landfill of food waste and continuous efforts made by government and local government, food waste production increases steadily. Recycling ratio of the food waste increases every year, but its products have many problems like low quality, stability, salt, odor etc. Household occupies 63.3% of whole food waste production and this is subject to be a key factor to control food waste. We surveyed S apartment in Kwangju city as a model case, in which administrative office and women's association adopted clean plate eating, separation of raw food waste and earth worm composting as a series of method for source reduction and recycling inside the apartment. With the help of residents' participation and practice, food waste production decreased 15.6% from 0.31 g/capita/day in 2007 to 0.26 g/capita/day in 2009 (domestic average 0.30 g/capita/day). Separation of raw food waste and its composting using earth worm were very effective, and were subject to resolve the problems of present food waste treatment technologies. And earth worm composting was very useful in environmental, economical, societal and educational aspects. Instead of economical incentive, educational programs about food value, environmental problem and critical method for food waste separation were more effective for promotion of source reduction. From the analyses on the process and success factors in this model, we could conclude that leader's role was one of the key factors for the settlement of source reduction, and that was to understand the seriousness of the food waste and to seek solution, to test techniques, and to practice by oneself. Furthermore, networking and collaboration among residents, local government, NGO and local press promoted residents' participation, and it was through various education and investigation. Finally, source reduction and self recycling model of food waste in the apartment, that applies separating raw food waste and earth worm composting based on the collaboration among residents, local government, NGO, and local press, should be disseminated, and environmental policy also should be changed to make it possible.

Evaluation of the influence of pillar width on the stability of a twin tunnel (필라폭이 병설터널의 안정성에 미치는 영향 평가)

  • You, Kwang-Ho;Kim, Jong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.115-131
    • /
    • 2011
  • Recently, considering the aspects of disaster prevention and environmental damage, the construction of a twin tunnel is increasing. When constructing a twin tunnel, the stresses are concentrated at the pillar so that stability of the tunnel is decreased. Since the previous studies on the behavior of a twin tunnel pillar are mainly restricted to the estimation of the tunnel behavior and the analysis of surface settlement, there is a limit to a quantitative stability estimation of the pillar. Therefore, it was quantitatively investigated how the pillar width of a twin tunnel affects its stability. To ensure this end, global tunnel safety factors obtained numerically using shear strength reduction technique, local safety factors of a pillar using the equation that Matsuda et al. suggested, and strength/stress ratios of the pillar were estimated and their results were analyzed for two sections with different rock covers. For a reasonable design of a twin tunnel pillar, it was turned out that strength/stress ratio, the local pillar safety factor, and global tunnel safety factor should be used interrelatedly rather than independently.

Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles (사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.337-356
    • /
    • 2012
  • Three-dimensional (3D) numerical analyses have been performed to study the behaviour of single piles and grouped piles to adjacent tunnelling in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the piles and shear transfer mechanism have been analysed allowing soil slip at the pile-soil interface by using interface elements. The study includes the shear stresses at the soil next to the pile, the axial force distributions on the pile and the pile settlement. It has been found that existing elastic solutions may not accurately estimate the pile behaviour since several key issues are excluded. Due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops above the tunnel springline while upward shear stress is mobilised below the tunnel springline, resulting in a compressive force on the pile. In addition, mobilisation of shear strength at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. It has been found that grouped piles are less influenced by the tunnelling than the single pile in terms of the axial pile forces. The reduction of apparent allowable pile capacity due to pile settlement resulted from the tunnelling seemed to be insignificant.

Influencing Factor Analysis on Groundwater Level Fluctuation Near River (지반 및 수문특성을 고려한 하천인근 지역의 지하수위 변동 영향인자 분석)

  • Kim, Incheol;Lee, Junhwan
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.72-81
    • /
    • 2018
  • Groundwater level (GWL) fluctuation, which can occur due to several artificial and natural reasons, causes reduction of bearing capacity of foundation structures and can lead settlement of ground. As a result, GWL fluctuation affects stability and serviceability of entire building. However, in many case, GWL is considered as fixed value that obtain from geotechnical investigations. That is reason that GWL fluctuation is considered as area of non-geotechnical engineering. In present study, factors causing GWL fluctuation were analyzed at urban and rural area as preliminary research of quantification of GWL fluctuation. GWL varies according to hydrological and geographical characteristics. Also, the influence factors are largely affected by hydrological and geographical characteristics.

A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses (수치해석을 이용한 기존 피해 보강토 옹벽의 보강에 관한 사례 연구)

  • Won, Myoung-Soo;Langcuyan, Christine P.;Choi, Jeong-Ho;Ha, Yang-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.

The Transition of Fertility and the Depopulation by the Stage Migration: A case study of Jeollabuk-do (단계적 인구이동에 따른 출산력 변화와 과소화: 전라북도를 사례로)

  • Lee, Chungsup;Kim, Sung Hwan
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.728-746
    • /
    • 2014
  • The purpose of this study is to analyze the influence of the selective migration of young age group and the stage migration which has proceeded through generations, on the transition of fertility and the population growth in the rural and urban in the case of Jeollabuk-do. For this, we use O-D matrix of 20-34 age group, the distribution of that group and women of child bearing age, and vital statistics in 1970-2010. The major findings of this study are as follows. First, the outflows from their birth place are common and dominant features of 20-34 age group in each time. Second, there is the stage migration which preceding generation moved from the rural areas to the cities in Jeollabuk-do and following generation has moved from the cities to Seoul metropolitan area. Third the selective outflow migration of young age group has leaded to reduction of the childbearing population, declining birthrate, aging and natural population decline. Due to the stage migration, these depopulation processes occurred in rural area in the past, and currently it expands to the cities with about 15 years time gap. In fact, there have been the natural population decrease which annual number of deaths exceed that of births from the late 1980s in the most rural areas and in the early 2000s, such a phenomenon has been confirmed also in urban areas. Therefore, this study concludes that the stage migration through generations is one of the crucial factor to the population growth in local cities and also brings out the step-wise population decrease in settlement hierarchies.

  • PDF

Characteristics for Consolidation and Shear Strength of Bottom Ash Compaction Pile According to Replacement Ratio in Clay (점토지반에 적용된 저회다짐말뚝의 치환율에 따른 압밀침하특성 및 전단특성)

  • Park, Sehyun;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.57-63
    • /
    • 2010
  • The necessity of effective and economical improvement for soft ground is required more and more as mountains form 70% of country. The soft ground improvement methods for ocean development are sand compaction pile method, displacement method are applied to the soft ground improvement from ocean development pre-loading method, air pressure method, well point method, pack drain method, quicklime pile method etc. Among them, the sand compaction pile method, has many problems such as the economical problem on importing materials due to the lack of sand and destroying the nature while collecting sand. To replace the sand with other alternative materials, a study on the bottom ash compaction pile method because the bottom ash has the similar engineering properties with sand. Therefore, in this study, after compose the complex soil with a replacement rate of 10~80% and a large direct shear test, shear test, consolidation test with replacement rates of bottom ash are performed to estimate whether its shear and consolidation characteristics are suitable for the alternative material of compaction pile method. As a result of test, Shear Strength Parameters tend to be increased in accordance with the increase of replacement ratio of bottom compaction pile, and Settlement Reduction Factor and $t_{90}$ tend to be decreased.