• Title/Summary/Keyword: Setback

Search Result 445, Processing Time 0.025 seconds

Effects of Blends of Low-Protein Winter Wheat Flour and Barley Byproducts on Quality Changes in Noodles

  • Lee, Na-Young
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.361-366
    • /
    • 2016
  • The physicochemical characteristics of fresh noodles made with blends of low-protein wheat flour and barley byproduct (BBP, $250{\mu}m$) were investigated. The crude protein contents (PC) of flour from Goso and Backjoong cultivars were 7.91% and 7.67%, respectively. PC and ${\beta}$-glucan contents from the BBP were 14.10% and 3.11%, respectively, which were higher than those in wheat flour. The water-holding capacity (WHC) of various blends was increased as a function of BBP but not gluten contents. Goso flour had the highest starch content (78.68%), with peak and final viscosities of 3,099 and 3,563 cp, respectively. Peak and final viscosities, trough, breakdown, and setback of the blends were decreased with the addition of BBP. Noodles made with Backjoong had the highest thickness score, while the hardness of noodles made with blends of Goso or Backjoong and 20% BBP were similar to those made from wheat flour only. The WHC of the samples was strongly correlated with PC, crude fiber, and ${\beta}$-glucan. The PC was not correlated with final viscosity, setback, thickness, hardness, gumminess, or chewiness.

Gelatinization Characteristics of Glutinous Rice Varieties

  • Kim, Kwang-Ho;Park, Hong-Sook;Kim, Jae-Sung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.64-69
    • /
    • 1999
  • Gelatinization characteristics of 111 glutinous rice varieties were evaluated by Rapid Visco Analyzer. Gelatinization viscosity of glutinous rice tested varied with ecotypes or varietal groups: indica, japonica, and Tongil type. Indica rice showed the highest average value of initial pasting temperature. The average values for peak, hot, and cool viscosities were highest in Tongil-type rice, and lowest in japonica rice. Japonica showed the lowest breakdown and consistency, but the highest setback value. Indica was lower in alkali digestion value (ADV), and shorter in gel length after gelatinization thanjaponica and Tongil-type. Glutinous rices tested could be divided into six groups by cluster analysis based on their gelatinization characteristics. Group I-A was mostly early maturing japonica varieties while I-B was mostly indica and Tongil-type rices. Groups II-A and II-B were consisted of very early maturingjaponica, and III-A and III-B included medium or medium late maturingjaponica varieties. Group III-A showed the lowest average values of peak, hot, cool, and consistency viscosities, and also in breakdown and setback ratios. Group I-B revealed the highest values in peak, hot, cool, breakdown, and consistency viscosities. ADV was low in groups I-A, I-B, and II-B, and gel consistency was not different among the six varietal groups. Principal component analysis using seven traits related with gelatinization produced four effective components, and the first and second components were highly correlated with all the gelatinization characters evaluated.

  • PDF

Physicochemical Properties of Corn Starch Oxidized with Sodium Hypochlorite (산화에 따른 옥수수 전분의 이화학적 특성 변화)

  • 한진숙;안승요
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • Corn starch was modified by oxidation with sodium hypochlorite (NaOCl) as an attempt to expand the application of starches in food industry. Corn starch was oxidized with 0.25, 0.5, 0.75, 1.0 and 1.5% active Cl/g starch at pH 7.0 and $25^{\circ}C$ for 10 minutes. The size, shape and amylose content of oxidized starches were similar to those of native corn starch. As the extent of oxidation increased, solubility, swelling power and the amount of soluble amylose increased, X-ray diffraction patterns changed, and relative crystallinity decreased. In Brabender amylogram, oxidation did not chance the gelatinization temperature, but oxidized starches had a lower peak in viscosity and their cooled pastes gave less setback, compared with native corn starch.

Seismic vulnerability assessment of low-rise irregular reinforced concrete structures using cumulative damage index

  • Shojaei, Fahimeh;Behnam, Behrouz
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.407-422
    • /
    • 2017
  • Evaluating seismic performance of urban structures for future earthquakes is one of the key prerequisites of rehabilitation programs. Irregular structures, as a specific case, are more susceptible to sustain earthquake damage than regular structures. The study here is to identify damage states of vertically irregular structures using the well-recognized Park-Ang damage index. For doing this, a regular 3-story reinforced concrete (RC) structure is first designed based on ACI-318 code, and a peak ground acceleration (PGA) of 0.3 g. Some known vertical irregularities such as setback, short column and soft story are then applied to the regular structure. All the four structures are subjected to seven different earthquakes accelerations and different amplitudes which are then analyzed using nonlinear dynamic procedure. The damage indices of the structures are then accounted for using the pointed out damage index. The results show that the structure with soft story irregularity sustains more damage in all the earthquake records than the other structures. The least damage belongs the regular structure showing that different earthquake with different accelerations and amplitudes have no significant effect on the regular structures.

Wind-induced Aerodynamic Instability of Super-tall Buildings with Various Cross-sectional Shapes

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The effectiveness of aerodynamic modification to reduce wind loadings has been widely reported. However, most of previous studies have been investigated dynamic forces and pressure distributions on tall buildings with various unconventional configurations. This study was investigated dynamic characteristics and aerodynamic instability of super-tall buildings with unconventional configurations through extensive aeroelastic model experiments. Seventeen types of supertall building models were considered such as basic and corner modification with corner cut, chamfered, oblique opening, tapered, inversely tapered, bulged, helical with twist angles of $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ and composite with $360^{\circ}$ helical & corner cut, 4-tapered & $360^{\circ}$ helical & corner cut, setback & corner cut, setback & $45^{\circ}$ rotate. As a result, aerodynamic characteristics of helical models with single modification are superior to those of other models with single modification. However, effect of twist angle for helical model is negligible. Further, the 4-tapered & $360^{\circ}$helical & corner cut model is most effective in reducing the along- and across-wind fluctuating displacement responses in all of experimental models.

Shape Effects on Aerodynamic and Pedestrian-level Wind Characteristics and Optimization for Tall and Super-Tall Building Design

  • Kim, Yong Chul;Xu, Xiaoda;Yang, Qingshan;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.235-253
    • /
    • 2019
  • This paper reviews shape optimization studies for tall and super-tall building design. Firstly, shape effects on aerodynamic and response characteristics are introduced and discussed. Effects of various configurations such as corner modifications, taper, setback, openings, and twists are examined. Comprehensive comparative studies on various configurations including polygon building models, and composite type building models such as corner-cut and taper, corner-cut and taper and helical, and so on, are also discussed under the conditions of the same height and volume. Aerodynamic characteristics are improved by increasing the twist angle of helical buildings and increasing the number of sides of polygon buildings, but a twist angle of $180^{\circ}$ and a number of sides of 5 (pentagon) seem to be enough. The majority of examined configurations show better aerodynamic characteristics than straight-square. In particular, composite type buildings and helical polygon buildings show significant improvement. Next, shape effects on pedestrian-level wind characteristics around tall and super-tall buildings are introduced and discussed. Corner modification buildings show significant reductions in speed-up areas. On the other hand, setback and tapered models with wider projected widths near the ground show adverse effects on pedestrian-level wind characteristics.

The exact bearing capacity of strip footings on reinforced slopes using slip line method

  • Majd Tarrafa;Ehsan Seyedi Hosseininia
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This study presents a groundbreaking analytical approach to find an exact solution for the bearing capacity of strip footings on reinforced slopes, utilizing the two-phase approach and slip line method. The two-phase approach is considered as a generalized homogenization technique. The slip line method is leveraged to derive the stress field as a lower bound solution and the velocity field as an upper bound solution, thereby facilitating the attainment of an exact solution. The key finding points out the variation of the bearing capacity factor Nγ with influencing factors including the backfill soil friction angle, the footing setback distance from the slope crest edge, slope angle, strength, and volumetric fraction of inclusion layers. The results are evaluated by comparing them with those of relevant studies in the literature considering analytical and experimental studies. Through the application of the two-phase approach, it becomes feasible to determine the tensile loads mobilized along the inclusion layers associated with the failure zone. It is attempted to demonstrate the results by utilizing non-dimensional graphs to clearly illustrate variable impacts on reinforced soil stability. This research contributes significantly to advancing geotechnical engineering practices, specifically in the realm of static design considerations for reinforced soil structures.

Physicochemical Properties of Brown Rice Flours Differing in Amylose Content Prepared by Different Milling Methods (아밀로오스 함량이 다른 현미의 제분방법별 이화학적 특성)

  • Lee, Young-Tack;Kim, Yeon-U
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1797-1801
    • /
    • 2011
  • Two brown rice samples differing in amylose content, 20.1 (normal) and 7.3% (low amylose) were milled by different milling methods, and their physicochemical properties were tested. Particle size of brown rice flour prepared by dry milling using a pin mill (DM) was lower than that prepared by wet milling using a roll mill (WM). Particle size was further reduced by successive dry milling of the flour after wet milling and drying (WM/DM). Damaged starch contents in the wet milled brown rice flour were 14.6 and 15.6% for the normal and low amylose samples, respectively, whereas they were only 4.2 and 4.8% for the dry milled samples. WM/DM method resulted in a lower damaged starch (%) than DM, despite a reduced flour particle size. Water absorption index (WAI) of the brown rice flour was the lowest after WM/DM, and the water solubility index (WAI) was higher in the order of DM, WM/DM, and WM. Brown rice flour with normal amylose content appeared to have significantly higher pasting viscosities, as determined using a Rapid Visco Analyzer (RVA). Compared to dry milled brown rice flour, wet milled brown rice flour showed lower peak viscosity and higher final viscosity, resulting in increased setback value.

Three-dimensional analysis of soft and hard tissue changes after mandibular setback surgery in skeletal Class III patients (골격성 3급 부정교합 환자의 하악골 후퇴술 시행후 안모변화에 대한 3차원적 연구)

  • Park, Jae-Woo;Kim, Nam-Kug;Kim, Myung-Jin;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.320-329
    • /
    • 2005
  • The three-dimensional (3D) changes of bone, soft tissue and the ratio of soft tissue to bony movement was investigated in 8 skeletal Class III patients treated by mandibular setback surgery. CT scans of each patient at pre- and post-operative states were taken. Each scan was segmented by a threshold value and registered to a universal three-dimensional coordinate system, consisting of an FH plane, a mid-sagittal plane, and a coronal plane defined by PNS. In the study, the grid parallel to the coronal plane was proposed for the comparison of the changes. The bone or soft tissue was intersected by the projected line from each point on the gird. The coordinate values of intersected point were measured and compared between the pre- and post-operative models. The facial surface changes after setback surgery occurred not only in the mandible, but also in the mouth corner region. The soft tissue changes of the mandibular area were measured relatively by the proportional ratios to the bone changes. The ratios at the mid-sagittal plane were $77\~102\%(p<0.05)$. The ratios at all other sagittal planes had similar patterns to the mid-sagittal plane, but with decreased values. And, the changes in the maxillary region were calculated as a ratio, relative to the movement of a point representing a mandibular movement. When B point was used as a representative point, the ratios were $14\~29\%$, and when Pog was used, the ratios were $17\~37\%(9<0.05)$. In case of the 83rd point of the grid, the ratios were $11\~22\%(p<0.05)$.

Quality Characteristics and Preparation of Noodles from Brown Rice Flour and Colored Rice Flour (유색미가루와 현미가루를 첨가한 국수제조 및 품질특성)

  • 이원종;정진구
    • Culinary science and hospitality research
    • /
    • v.8 no.3
    • /
    • pp.267-278
    • /
    • 2002
  • To promote the consumption of race, comparative study was performed on characteristics of wheat flour noodle mixed with brown rice flour and colored rice flour. Protein content of colored rice was higher than that of the brown rice, but lipid and ash contents were similar to those of brown rice. Colored rice flour had significantly lower peak viscosity, holding viscosity, breakdown viscosity, final viscosity and setback viscosity than those of wheat flour, while brown rice had significantly higher peak viscosity, breakdown viscosity and setback viscosity than those of colored rice flour and wheat flour. Colored rice and brown rice had 5.3~6.4% total dietary fiber, and the proportions of soluble fiber in total dietary fiber were quite low, ranging from 9.4% to 18.8%. L(brightness), a(redness) and b(yellowness) of raw noodles were measured using a colorimeter. L(brightness) and b(yellowness) values of Asian raw noodles made from colored rice and brown rice significantly decreased. Addition of colored rice flour and brown rice flour to Asian noodle reduces cutting forces of dry and cooked noodles. The cooked noodle with 10% chalheukmi waxy rice flour was the highest in the cutting force of cooked noodle. Addition of 20% chalheukini waxy rice flour and 20% brown rice flour to wheat flour was got to a relatively high score for appearance, color, texture, taste and overall eating quality from sensory evaluation of cooked noodles.

  • PDF