• Title/Summary/Keyword: Set-up 예측

Search Result 295, Processing Time 0.023 seconds

Species-specific Growth Responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis Seedlings to Open-field Artificial Warming (거제수나무, 물푸레나무, 굴참나무 묘목의 실외 인위적 온난화에 대한 수종 특이적 생장 반응)

  • Han, Saerom;An, Jiae;Yoon, Tae Kyung;Yun, Soon Jin;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • Evaluation of tree responses to temperature elevation is critical for a development of forest management techniques coping with climate change. We conducted a study on the growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Artificial warming set-up using infra-red heater was built in 2012 and the temperature in warmed plots was regulated to be consistently $3^{\circ}C$ higher than that of control plots. The seeds of three species were sown, and the responses of growth, biomass allocation, and net photosynthetic rate of newly-germinated seedlings on the open-field artificial warming were determined. As a result, the growth responses of the seedlings differed with the species. B. costata showed decreases in the height to diameter ratio (H/D ratio), biomass, root weight to shoot weight ratio, and net photosynthetic rate. However, root collar diameter (RCD), height, biomass, and net photosynthetic rate of Q. variabilis were increased, while the response of F. rhynchophylla was rather obscure. There was no significant difference between warmed and control plots in seedling growth for 3 species in July, whereas, RCD, height, and H/D ratio of Q. variabilis were increased and H/D ratio of B. costata was decreased in November under warming. Species-specific growth responses to warming were similar to the species-specific responses of net photosynthetic rate and biomass allocation; therefore, net photosynthetic rate and biomass allocation might attribute to growth responses to warming. Besides, a relatively obvious response in autumn compared to summer might be affected by the phenological change following artificial warming. Species-specific responses of three deciduous species to warming in this study could be applied to the development of adaptive forest management policies to climate change.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Site Characteristics, and Vegetation Structure, and Dynamics of Forest Communities growing Kalopanax septemlobus (Thunb.ex Murray) Koidz. in Gangwon-do (강원도 음나무 자생 임분의 입지환경, 식생구조 및 동태)

  • 이철호;최영철;김세현;권기원
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.227-242
    • /
    • 2000
  • Site characteristics, vegetation structure and dynamics of Kalopanax septemlobus forests in Mt. Heungjeong, Mt. Balwang and Mt. Gariwang were studied to provide the information need for national resources conservation and restoration of K. septemlobus forest in Gangwon-do of Korea. The K. septemlobus forests were distributed at 780m to 1,300m in altitude, steep slope, ridges-slope areas with facing northeast to northwest in good nutrition area. The annual diameter growth of those trees ranged 1.60mm to 2.41mm. Forty-three plots(20$\times$20m) were set up at three natural population of Kalopanax septemlobus forest and TWINSPAN method was used for vegetation structure analysis. The result of TWINSPAN ordination show that geographical features played a role in determining community types in the study areas. Community type of the study areas classified into three groups by TWINSPAN; K. septemlobus-Quercux mongolica- Acer mono community(Mt. Balwang), K. septemlobus-Q. mongolica- Tilia amurensis community(Mt. Heungjeong), K. septemlobus-Betula costata-Q. mongolica community(Mt. Gariwang). In most of the K. septemlobus forests, major woody species appeared predominantly were Q. mongolica, T. amurensis, Acer pseudo-sieboldianum, Lindera obtusiloba, A. mono, Magnolia sieboldii, Ulmus davidiana var. japonica. And also, Those species were surveyed in all the areas. Species diversity(H') of investigated areas ranged 0.3124~0.13992 and this value relatively higher than that of other forests with similar site. The range of similarity indices between surveyed areas was 64.1~64.54%. The distribution pattern of Morista's index show that Kalopanax septemlobus distributed randomly in tree and concentrated a few sample plots in subtree layer and shurb layer. K. septemlobus occupied 37.1~58.8% of tree layer story, 8.4~17.6% of subtree layer, 0~0.38% of shurb layer each surveyed area. The association analysis showed that Kalopanax septemlobus positively associated with Betula ermani, Deutzia glabrata, Carpinus cordata, Fraxinus mandshurica and negatively associated with Symplocos chinensis var. pilosa, Styrax obassia, Acer mono, Euonymus macroptera, Ulmus davidiana var. japonica. According to the diameter distribution of Kalopanax septemlobus community, the community of Mt. Gariwang will gradually decline and replaced by Quercus community. The communities of Mt. Heungjeong and Mt. Balwang has its seedlings and saplings, so it may be sustained.

  • PDF

One-stop Evaluation Protocol of Ischemic Heart Disease: Myocardial Fusion PET Study (허혈성 심장 질환의 One-stop Evaluation Protocol: Myocardial Fusion PET Study)

  • Kim, Kyong-Mok;Lee, Byung-Wook;Lee, Dong-Wook;Kim, Jeong-Su;Jang, Yeong-Do;Bang, Chan-Seok;Baek, Jong-Hun;Lee, In-Su
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.33-37
    • /
    • 2010
  • Purpose: In the early stage of using PET/CT, it was used to damper revision but recently shows that CT with MDCT is commonly used and works well for an anatomical diagnosis. This hospital makes the accuracy and convenience more higher in the diagnosis and evaluate of coronary heart disease through concurrently running myocardial perfusion SPECT examination, myocardial PET examination with FDG, and CT coronary artery CT angiography(coronary CTA) used PET/CT with 64-slice. This report shows protocol and image based on results from about 400 coronary heart disease examinations since having 64 channels PET/CT in July 2007. Materials and Methods: An Equipment for this examination is 64-slice CT and Discovery VCT (DVCT) that is consisted of PET with BGO ($Bi_4Ge_3O_{12}$) scintillation crystal by GE health care. First myocardial perfusion SPECT with pharmacologic stress test to reduce waiting time of a patient and get a quick diagnosis and evaluation, and right after it, myocardial FDG PET examination and coronary CTA run without a break. One-stop evaluation protocol of ischemic heart disease is as follows. 1)Myocardial perfusion SPECT with pharmacologic stress: A patient is injected with $^{99m}Tc$-MIBI 10 mCi and does not have any fatty food for myocardial PET examination and drink natural water with ursodeoxcholic acid 100 mg and we get SPECT image in an hour. 2)Myocardial FDG PET: To reduce blood fatty content and to increase uptake of FDG, we used creative oral glucose load using insulin and Acipimox to according to blood acid content. A patient is injected with $^{18}F$-FDG 5 mCi for reduction of his radiation exposure and we get a gated image an hour later and get delay image when we need. 3) Coronary CTA: The most important point is to control heart rate and to get cooperation of patient's breath. In order to reduce a heart rate of him or her below 65 beats, let him or her take beta blocker 50 mg ~ 200 mg after a consultation with a doctor about it and have breath-practices then have the examination. Right before the examination, we spray isosorbide dinitrate 3 to 5 times to lower tension of bessel wall and to extension a blood wall of a patient. It makes to get better the shape of an anatomy. At filming, a patient is injected CT contrast with high pressure and have enough practices before the examination in order to have no problem. For reduction of his radiation exposure, we have to do ECG-triggered X-ray tube modulation exposure. Results: We evaluate coronary artery stenosis through coronary CTA and study correlation (culprit vessel check) of a decline between stenosis and perfusion from the myocardial perfusion SPECT with pharmacologic stress, coronary CTA, and can check viability of infarction or hibernating myocardium by FDG PET. Conclusion: The examination makes us to set up a direction of remedy (drug treatment, PCI, CABG) because we can estimate of effect from remedy, lesion site and severity. In addition, we have an advantage that it takes just 3 hours and one-stop in that all of process of examinations run in succession and at the same time. Therefore it shows that the method is useful in one stop evaluation of ischemic heart disease.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF