• Title/Summary/Keyword: Sesamum indicum L.

Search Result 107, Processing Time 0.029 seconds

Genetic Variance and Combining Ability of Shattering and Growth Characters by Diallel Crosses of Sesame (이면교잡에 의한 참깨의 탈립성 및 생육형질의 유전변이와 조합능력)

  • Kim, Dong-Hwi;Kang, Chul-Whan;Shim, Kang-Bo;Park, Chang-Hwan;Lee, Sung-Woo;Seong, Nak-Sul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.652-657
    • /
    • 2006
  • Combining ability and heterosis for $F_{1}$ population obtained $5{\times}5$ half diallel cross in sesame were estimated for six quantitative characters. The parental varieties used for diallel cross were Yangbaek and Ansan of normal type, Suwon 177 and 195 of placenta adhesion type (PA) and SIG960320-5-1-1 of indehiscent type (ID). PA and ID type are shattering-resistant sesames and Yangbaek and Ansan are shattering sesames. The high heterosis of $F_{1}$ hybrids was expressed in the number of capsules per plant (NC), grain yield per plant (GY) and number of branches per plant (NB). Shattering.ate (SR) showed high positive heterosis toward increase of seeds shattering in all the combination of $F_{1}$ generation which was presumed because the characters connected with shattering resistance of seeds were governed by recessive gene. At the analysis of combining ability, highly significant general combining ability (GCA) effects were observed on all the characters in $F_{1}$ generation, significant specific combining ability (SCA) effects were observed on the NC, GY and SR. GCA variances were greater than SCA variance, which suggested that additive gene effects were greater than other nonadditive gene effects. Considering the estimated GCA effects, Suwon 195 (PA type) was found to be good parent for SR and GY, SIG960320-5-1-1 (ID type) was poor for GY and plant height. SCA effect for NC was great in Yangbaek/Suwon 195, SCA for GY was great in Ansan/SIG960320-5-1-1, and SCA for decrease of SR was great in Ansan/Suwon177.

Studies on the Flowering and Maturity in Sesame (Sesamum indicum L.) II. Capsule-Setting Habit by Different Plant Types (참깨의 개화 등숙에 관한 연구 II. 참깨의 초형에 따른 착삭습성)

  • Jung-Il Lee;;Eung-Ryong Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.376-385
    • /
    • 1984
  • The habit of anthesis and maturity of sesame were investigated as a basic research for the improvement of high-yielding varieties and cultural practices. Eight different plant types were identified using typical cultivars among gene pool grown in Korea. Non-branching, Monocapsule, Bicarpels quadriloculi (NMB) type showed higher ratio for capsule setting compared with Non-branching, Monocapsule, Quadricarpels octoloculi (NMQ) type. Non-branching, Tricapsules, Quadricarpels octoloculi(NTQ) type presented lower ratio for capsule setting than non-branching, tricapsules, bicarpels quadriloculi(NTB) type. The number of flowers by flower setting position was the highest on lower part, intermediate on middle part, and the lowest on higher part in NMB and NTB type. However, the number of flowers was the highest on middle part, intermediate on lower part, and lowest on higher part in NMQ and NTQ type. BMB type appeared to have the highest ratio for capsule setting when compared with the other plant types. BTB type with many flowers and capsules exhibited higher percentage for capsule setting than BTQ type with lowest capsule setting percentage. Capsule setting percentage of branch appeared to be lower than that of main stern in the branching type. The branching type had more flowers and capsules than non-branching type. Tricapsules type had more flowers and capsules per plant than monocapsule type, and bicarpels quadriloculi type had more than quadricarpels octoloculi type. However, capsule setting ratio in non-branching type was higher than in branching type. The ratio was higher in monocapsule type than in tricapsules type. Bicarpels quadriloculi type had higher ratio of capsule setting than quadricapels octoloculi type. Number of capsules per plant and capsule setting ratio are supposed to be dominated by shape of capsule (number of carpels and loculi), not by branching or number of capsules per axil. The order of number of capsules per plant was as follows; BTB, BMB, NTB, BTQ, BMQ, NTQ, NMQ, and NMB types. However, the order of capsule setting ratio was as follows: BMB, NMB, NTB, NTQ, NMQ, BMQ, BTB, BTQ types. Consequently, branching, tricapsules, bicarpels quadriloculi(BTB) type was considered as a sourse of breeding for high yielding varieties by introducing the genes govering BMB type with one capsule per axil which has high capsule setting ability.

  • PDF

Method Validation for Determination of Lignan Content in Fermented Sesame by Bioconversion (생물전환된 참깨 발효물의 Lignan 화합물의 분석법 검증)

  • Jung, Tae-Dong;Kim, Jae-Min;Choi, Sun-Il;Choi, Seung-Hyun;Cho, Bong-Yeon;Lee, Jin-Ha;Lee, Sang Jong;Park, Seon Ju;Heo, In Young;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.646-652
    • /
    • 2017
  • The aim of this study was to investigate method validation for determination of sesamol, sesamin, and sesamolin in non-fermented sesame and fermented sesame by bioconversion. For validation, the specificity, linearity, precision, accuracy, limits of detection (LOD), and quantification (LOQ) of sesamol, sesamin, and sesamolin were measured by HPLC. Linearity tests showed that the coefficients of calibration correlation ($R^2$) for sesamol, sesamin, and sesamolin were 0.9999. Recovery rates of lignan contents in non-fermented and fermented sesame were high in the ranges of 100.27~115.10% and 98.43~114.90%, respectively. The inter-day and intra-day precisions of sesamin and sesamolin analyses for non-fermented and fermented sesame were 0.27~1.94% and 0.25~0.69%, respectively. The LOD and LOQ were $0.23{\sim}0.34{\mu}g/g$ and $0.70{\sim}1.03{\mu}g/g$, respectively. These results indicate that the validated method is appropriate for the determination of sesamol, sesamin, and sesamolin.

Effects of Planting Date on Agronomic Characteristics and Varietal Differences in Sesame Varieties (파종기 이동에 따른 참깨 품종들의 유용형질 변화 및 품종간 차이)

  • Lee, J.I.;Lee, S.T.;Um, G.C.;Park, C.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.268-275
    • /
    • 1982
  • This study was conducted to obtain basic informations for breeding and improving cultural practices of sesame (Sesamum indicum L.) through investigation of several agronomic characters of 82 major varieties plants in April 20, May 15 and June 20. Stem diameter and plant height were largest in early planting(April 20). On the contrary, they were smallest in late planting(June 15). Therefore, the later planting, the poorer the vegetative growth on the basis of stem diameter and plant height. Number of capsules per plant and number of grains per capsule were 88 and 54, respectively, in the early planting, while they were decreased to 25 capsules and 40 grains in late planting. The percentage of ripeness and 1000 grain weight 78 and 2.3g in the April 20planting while they were 58% and 2.1g in June 20 planting indicating the later planting, the lower the ripeness. Grain yield per m1 in April 20 and June 20 planting was 112 and 18g respectively. Consequently, grain yield significantly decreased as planting delayed. On the basis of the vegetative and reproductive growth, varieties could be classified into early, conventional, late and indetermediate planting adapted groups. The major yield components were highly and postively correlated with accmulated sunshine hours and temperatures confirming that grain yield was closely related with sunshine and temperature. Among the varieties tested, Gurye and Local 135 had more than 150 capsules. Haenam and Woogang had more than 75 grains per capsule. Since grain yield oflate planted sesame were significantly different among the varieties, breeding of sesame for after barly cropping would be more effective under late cultural condition of after barly.

  • PDF

Studies on the Flowering and Maturity in Sesame 1. Flowering Habit by Different Plant Types (참깨 개화, 등숙에 관한 연구 -제 1 보 참깨 초형에 따른 개화특성에 관한 연구-)

  • Lee, J.I.;Kang, C.W.;Lee, S.T.;Son, E.R.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 1984
  • This experiment was performed to investigate the flowering habit of sesame (Sesamum indicum L.). Sesame varieties tested could be classified into 8 different plant types by their morphological traits such as capsule shape, capsule setting habit and branching types among sesame gene pool of Crop Experiment Station, ORD. The first flower was appeared at the lowest node on main stem. Flowers were appeared progressively toward the tip of the main stem and also toward the tips of branches. The interval of flowering for a node was about one day, but 3 to 8 days for the flowers on the tips. Side flowers started at 4 to 5 nodes lower than those of center flower at the same day. Flowers were beared 2 by 1 node on the middle part of flower setting node (7-9) in mono capsule setting habit in spite of its normal is 1 by 1 node on the other nodes. Flowers were beared opposite direction on each node of stem and flowering toward the tip of main stem composed of cross shape between nodes and spiral, reverse of clockwise direction. We called this habit as cross spiral flowering order and cross spiral phyllotaxis. The first flower on branches was appeared when center flower on the 5th node of main stem began to flower. The branches produced at higher nodes on main stem showed larger flowering periods and more number of flowers than that at lower parts. BTB (Branch, Tricapsule, Bicarpels, 4 Loculi) type showed three capsule setting habits and same flowering period both on main stem and branches while BTQ (Branch, Tricapsule, Quadricarpels, 8 Loculi) type showed three capsule setting habit on main stem and mono-capsule setting habit on branches. In BTQ type, the period of flowering was much shorter on branches than on main stem. Branching type was considered more promising than non branching type for the breeding of early maturing high yielding variety because branching type has the advantage of bearing a lot of flowers in comparatively short flowering period.

  • PDF

Incidence of Fusarium Wilt of Sesame (Sesamum indicum L.) in Relation to Air Temperature (참깨 시들음병(病) 발병(發病)과 재배기간중(栽培期間中) 온도(溫度)와의 관계(關係))

  • KANG, S.W.;CHO, D.J.;Lee, Y.S.
    • Korean journal of applied entomology
    • /
    • v.24 no.3 s.64
    • /
    • pp.123-127
    • /
    • 1985
  • Incidence of the Fusarium wilt caused by F. oxysporum f. sp. vasinfectum of sesame (var. Kwangsan) was remarkably influenced by seeding date and mean air temperature in the field of two or three year's continuous cropping with sesame in 1983 and 1985. Sesame were seeded on six different dates from April 20 to July 5. Air temperature was checked daily at the meteorological station near the experimental field. Low($16{\sim}20^{\circ}C$) and high temperature($20{\sim}25^{\circ}C$) periods were provisionally devided, based on every ten-day mean daily temperature during field experiment for last ten years, which corresponded to before and after June 15 in Jinju, Gyeong-nam. Infection rates were 83.7%, 68.2% and 59.4% in the plants grown for 55 days (seeding date: April 20), 40 days(May 5) and 25 days(May 20) under low temperature. On the other hand, infection rates were below 3% in those plots seeded during high temperature period. The longer the growth period exposed to low temperature, the higher was infection rates. It is interesting to note that 40 days old seedling or older are prone to severe infection compared to the younger ones, in higher temperature of $20{\sim}25^{\circ}C$. Therefore, seedlings in vegetative growth stage are less prone to infection than these in reproductive growth stage. The result showed that air temperature during sesame growth was one of the most important factor affecting the incidence of Fusarium wilt. This suggested that sesame crop, which is of tropical origin, has been predisposed to Fusarium wilt, when the plants were exposed to low temperature of $16{\sim}20^{\circ}C$.

  • PDF

Studies on the Germination Characteristics of Sesame (Sesamum indicum L.) (참깨의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Kim, Choong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.28-60
    • /
    • 1983
  • This study was carried out to define the effects of external factors including temperature, moisture, oxygen and light quality on the germination of sesame seeds and to investigate the change of major chemical constituents of seeds during germination. The results obtained are summarized as follows: 1. The average germination ratio was from 95.8% to 97.2% when it was tested every $5^{\circ}C$ intervals from $20^{\circ}C$ to $35^{\circ}C$ and no significant difference in germination ratio was found within $20^{\circ}C$ to $35^{\circ}C$. But the germination ratio dropped rapidly to 32.2% when seeds were germinated at $15^{\circ}C$ and the coefficient of variation become greater(77%) 2. The days required for germination ranged from 1.16 to 1. 64 at the temperatures of $35^{\circ}C$ to $25^{\circ}C$ and they were 3.07 and 10.4 at the temperatures of $20^{\circ}C$ and $15^{\circ}C$, respectively. 3. Considering the germination ratio and days needed, $15^{\circ}C$ was assumed to be the minimum temperature for germination practically and this temperature is recommended for testing low temperature tolerance of seed germination of sesame cultivars. 4. The varieties shown the highest low temperature tolerance were Shirogoma and Turkey. The next varieties shown some degree of low temperature germination were Suweon #29, Naebok and IS 58. The varieties with 70 to 80% of germination ratio were Maepo, Suweon #14, Kimpo, Moondeok, and Haenam. Among the 90 varieties tested, the varieties with comparatively high degree of low temperature tolerance were about 10%, and 70% of the low temperature tolerant varieties were domestic varieties. 5. At $12^{\circ}C$ the Shirogoma was the only variety which showed over 50% of germination ratio, 71.4% of the varieties showed less than 20% of germination ratio. When the temperature was raised to $27^{\circ}C$ 18 days after placement at $12^{\circ}C$ all the varieties showed over 90% of germination ratio within 2days. 6. The amounts of water imbibition needed for seed germination were 0.48 to 0.62 times of the seed dry weight at $25^{\circ}C$ and were significantly different among sesame cultivars. About 63% of water required for germination was imbibed in 2 hours after placement of seeds under the germination condition. 7. Under saturated moisture condition the average germination ratio was 0.42%. In the soil of which water potential was -0.4bar 64.8% of the seeds germinated and the most adequate soil water potential for sesame seed germination was about -0.4 to -5.5 bar. The germination ratio decreased as the soil water potential declined below -5.5 bar. 8. Six out of 10 varieties were not influenced by 5% of oxygen in air germination chamber, while varieties such as Yecheon, PI 158073, IS 103 and Euisangcheon showed 64 to 91% of germination under the 5% oxygen content. Under anaerobic condition, cotyledones were not emerged but only hypocotyl was emerged and elongated. The germination ratio of IS 103 decreased significantly under anaerobic condition. 9. When the seeds were dried for 24 hours after 12 hours imbibition of water, the seeds of Cheongsong did not lose their germination ability and 27.5% was germinated but Suweon #9 and Early Russian failed to germinate. However, the germination ratio of IS 103 decreased when the seed were dried 24 hours after 4 hours imbibition of water and the germination ability of IS 103 was maintained even though the seeds were dried for 24 hours after 24 hours imbibition of water. 10. During germination, sugar content of sesame seed increased rapidly and activity of ${\alpha}$-amylase increased gradually while starch content decreased significantly. The rates of increase in sugar content and enzyme activity and decrease in starch content were significantly lower at $15^{\circ}C$ compared with those at $25^{\circ}C$. 11. During germination of sesame seeds, lipid content in the seeds dropped rapidly and the activity of alkaline lipase increased significantly at early stage of germination. The rate of decrease in lipid content and increase in emzyme activity was lower at $15^{\circ}C$ than at $25^{\circ}C$. 12. Four out of 6 varieties were not affected in germination by light wave length. But Suweon #8 was inhibited in germination by 600-650nm. and IS 103 by 600 to 650nm and 500 to 550nm of light wave length. Suweon #8 showed high germination ratio under 650 to 760 nm and 500 to 560nm, and IS 103 under 400 to 470nm and complete darkness. 13. The germination ratios increased significantly in the seeds of which 1000 grain weight is heavier. When the seeds were placed at soil 4cm deep, Cheongsong and Early Russian failed to emerge their cotyledones, but Suweon #9 and IS 103 showed 32.5 and 50% cotyledone emergence, respectively. The extracts from sesame plant and soil where the sesame was cultivated previously did not affect in the-germination of sesame seeds. 14. The covering by black or transparent polyethylene films increased germination ratio compared with uncovered seeds. The covering was effective in shortening the days needed for germination and in improving the early seedling growth, number of capsules per plant and grain yield. Difference was not so seizable between the two polyethylene films but the transparent film appeared somewhat more effective than the black one. 15. Simcheon, Cheongsong. Suweon #9. PI 158073 and IS 103 showed lower rate of water absorbtion by seed during germination and Suweon #8, Suweon #26, Orotall and Euisangcheon showed high increase in seed weight after water absorbtion by seed.

  • PDF