• Title/Summary/Keyword: Sesamolin

Search Result 48, Processing Time 0.019 seconds

Changes of Antioxidant Contents during Grain Filling in Different Plant Types of Sesame (참깨 초형별 등숙에 따른 항산화성분 함량의 변화)

  • Ryu, Su-Rho;Lee, Jung-Il;Choi, Chang-Yeol;Kang, Sam-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • This study was conducted to obtain the fundamental information on antioxidant component as affected by process of grain filling in different plant types of sesame. Sesamin and sesamolin as antioxidant components, oil content and seed weight were investigated for two plant types with different by branching habit. The sesamin and sesamolin contents in grains followed a pattern of increase immediately after flowering in branch type and monocapsule habit than non-branch type and tricapsule habit. But they started to decrease around 45 days after flowering, which oil content and seed weight continued to increase until maturity. The sesamin content increased quickly up from 10th to 40th day after flowering and showed almost maximum at 43th day after flowering. The sesamolin content increased quickly up from 20th to 30th day after flowering and showed almost maximum at 45th day after flowering. The oil content increased quickly up from 20th to 30th day after flowering and showed almost maximum at 47th day after flowering. The seed weight increased quickly up from 20th to 40th day after flowering and showed almost maximum at 48th day. The sesamin content, sesamolin content, oil content and seed weight showed almost maximum at from 43th to 48th day after flowering. So that this period was considered to be of physiological maturity.

  • PDF

Establishment of a Nondestructive Analysis Method for Lignan Content in Sesame using Near Infrared Reflectance Spectroscopy (근적외선분광(NIRS)을 이용한 참깨의 lignan 함량 비파괴 분석 방법 확립)

  • Lee, Jeongeun;Kim, Sung-Up;Lee, Myoung-Hee;Kim, Jung-In;Oh, Eun-Young;Kim, Sang-Woo;Kim, MinYoung;Park, Jae-Eun;Cho, Kwang-Soo;Oh, Ki-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Sesamin and sesamolin are major lignan components with a wide range of potential biological activities of sesame seeds. Near infrared reflectance spectroscopy (NIRS) is a rapid and non-destructive analysis method widely used for the quantitative determination of major components in many agricultural products. This study was conducted to develop a screening method to determine the lignan contents for sesame breeding. Sesamin and sesamolin contents of 482 sesame samples ranged from 0.03-14.40 mg/g and 0.10-3.79 mg/g with an average of 4.93 mg/g and 1.74 mg/g, respectively. Each sample was scanned using NIRS and calculated for the calibration and validation equations. The optimal performance calibration model was obtained from the original spectra using partial least squares (PLS). The coefficient of determination in calibration (R2) and standard error of calibration (SEC) were 0.963 and 0.861 for sesamin and 0.875 and 0.292 for sesamolin, respectively. Cross-validation results of the NIRS equation showed an R2 of 0.889 in the prediction for sesamin and 0.781 for sesamolin and a standard error of cross-validation (SECV) of 1.163 for sesamin and 0.417 for sesamolin. The results showed that the NIRS equation for sesamin and sesamolin could be effective in selecting high lignan sesame lines in early generations of sesame breeding.

Antioxidant Activity of Lignan Compounds Extracted from Roasted Sesame Oil on the Oxidation of Sunflower Oil

  • Lee, Jin-Young;Kim, Moon-Jung;Choe, Eun-Ok
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.981-987
    • /
    • 2007
  • Effects of lignan compounds (sesamol, sesamin, and sesamolin) extracted from roasted sesame oil on the autoxidation at $60^{\circ}C$ for 7 days and thermal oxidation at $180^{\circ}C$ for 10 hr of sunflower oil were studied by determining conjugated dienoic acid (CDA) contents, p-anisidine values (PAV), and fatty acid composition. Contents of lignan compounds during the oxidations were also monitored. ${\alpha}$-Tocopherol was used as a reference antioxidant. Addition of lignan compounds decreased CDA contents and PAY of the oils during oxidation at $60^{\circ}C$ or heating at $180^{\circ}C$, which indicated that sesame oil lignans lowered the autoxidation and thermal oxidation of sunflower oil. Sesamol was the most effective in decreasing CDA formation and hydroperoxide decomposition in the auto- and thermo-oxidation of oil, and its antioxidant activity was significantly higher than that of ${\alpha}$-tocopherol. Sesamol, sesamin, and sesamolin added to sunflower oil were degraded during the oxidations of oils, with the fastest degradation of sesamol. Degradation of sesamin and sesamolin during the oxidations of the oil were lower than that of ${\alpha}$-tocopherol. The results strongly indicate that the oxidative stability of sunflower oil can be improved by the addition of sesamol, sesamin, or sesamolin extracted from roasted sesame oil.

Effects of Oil Refining Processes on Oxidative Stability and Antioxidative Substances of Sesame Oil (정제공정이 참기름의 항산화 물질과 산화 안정성에 미치는 영향)

  • Han, Jin-Suk;Moon, Soo-Yeun;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 1997
  • Changes in antioxidative substances-sesamol, sesamin and sesamolin - and mineral contents of sesame oil during refining processes have been studied to investigate the oxidative stability of oils during the storage at $70^{\circ}C$. Fe, Cu, Mg and Zn were nearly removed from the oil by the degumming process. During storage, the changes of total volatile contents in crude and degummed sesame oil were not noticeable but those in alkali-refined and deodorized sesame oil were increased at early period of the storage. The increases of hexanal and pentanal were most noticeable and their concentration was increased markedly in alkali-refined, bleached and deodorized sesame oil at early period of the storage. During refining processes and storage, sesamin was relatively stable but the content of sesamolin was decreased. The content of sesamol was decreased until alkali-refining process but increased during a bleaching process. The content of sesamolin tended to decrease with increasing of sesamol during storage.

  • PDF

Effect of Temperature and Day-length on Antioxidants in Sesame (온도와 일장이 참깨의 항산화성분에 미치는 영향)

  • Ryu, Su-Rno;Lee, Jung-Il;Lee, Hyo-Sung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.330-335
    • /
    • 1993
  • Sesame cultivars were treated with temperature and daylength to determine the environmental variance of Antioxidant content The experiment was performed in phytotron with 11, 13, 15hours of daylength and 20/15, 25 120, 30/25$^{\circ}C (day / night) of temperature treatment. Varietal differences of antioxidant content were significant by the temperature and daylength treatment. Antioxidant content was incrased at higher temperature(25/2$0^{\circ}C$, 30/25$^{\circ}C) and daylength(13hours) but decreased at lower temperature (20/15$^{\circ}C), short daylength (l1hours) and long day length (15hours) condition. Sesamin content were showed 0.06% difference as maxium by the temperature treatment, while 0.03% by the daylength treatment. Sesamolin content were showed 0.03% difference as maxium by the temperature treatment, while 0.01% by the daylength treatment. The antioxidant content was influenced by the increased temperature than daylength.

  • PDF

Antioxidant and Synergistic Effect of Sesame Oil Cake Extract Treated from $\beta$-Glucosidase ($\beta$-Glucosidase 처리된 참깨박 추출물의 항산화 및 상승효과)

  • 손종연;강동우;신길만
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.6
    • /
    • pp.591-595
    • /
    • 2001
  • The antioxidant and synergistic effects of sesame oil cake extract treated with $\beta$ -glucosidase were examined. The sesamin and sesamolin were identified from the 80% ethanol extract of seame oil cake treated with $\beta$ -glucosidase, which suggested the presence of the active substances as their glycosides in sesame seed. The contents of sesamin and sesamolin in sesame oil cake extract were about 8.32% (8,315.4 mg/100g) and 0.28% (2,824.5mg/100g) , respectively. Sesame oil cake extract showed antioxidant activity at concentrations of 50ppm, 100ppm and 200ppm, and the effect was Increased with the addition of sesame oil cake extract. The antioxidant effect of sesame oil cake extract was stronger than that of $\alpha$-tocopherol or ascorbyl palmitate, but weaker than of BHT Also, when the sesame oil cake extract(50ppm) was used in combination with $\alpha$-tocopherol(50 ppm), the sesame oil cake showed very strong synergistic effect.

  • PDF

Perspectives of Utilization and Function of Antioxidants in Sesame (참깨 항산화물질의 기능과 함량 및 이용 전망)

  • Ryu Su Noh;Kang Chul Whan;Lee Jung Il;Lee Seung Tack;Kim Kwan Su;Ahn Byung Og
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.94-109
    • /
    • 1996
  • Antioxidants of sesame have been reported to cure and prevent various diseases by means of diverse physiological activities, prevention of acidification in organisms, prevention of acidification and decay of lipids, cholesterol depression, preventive effects on chemical breast cancer, skin beauty and senescence inhibition, and so on. Recognizing their significance to health and disease prevention, researchers in Japan and America have given so much importance to study antioxidants in the last decade. In addition, they are actively pursuing studies on production, processing for food use and development of new varieties that have high antioxidant content. Recently, researchers in Korea have shown the same interest and have conducted similar studies, however, the importance of the following basic issues must be recognized to guide in future activites : First, improvement of sesame quality must be done to raise the contents of not only the fat and fatty acid but also sesamin, sesamolin and sesaminol glucoside. For the use of these components it is necessary to study the gentic pattern and individual selections developed from minimum sample size and fast lipid analysis techniques. Second, sesaminol of sesame has a remarkable function in preventing acidification and so sesame can be utilized as a food that prevents or delays aging caused by automatic acidification of fat. Therefore, for maximum medicinal benefit from sesame oil there is a need to develop food materials having new medicinal functions. Third, the sesamin and sesamolin content of sesame germplasms collected in Korea showed lower ranges of $0.04\~0.68$ percent and $0.08\~0.68$ percent respectively, while Japanese germ-plasm showed 1.9 percent maximum content of seasmin. Thus, germplasm collection and analysis of worldwide genetic resources are urgently needed.

  • PDF

A Comparison of Antioxidant Activities in Black Sesame Seeds according to Preparation and Cooking Conditions (흑임자의 조리 조건에 따른 항산화 효과의 비교)

  • Park, Jung-Lee;Chae, Kyung-Yeon;Hong, Jin-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.4
    • /
    • pp.520-531
    • /
    • 2007
  • In this study, we found that the moisture content of black sesame seeds increased in proportion to steaming time, and it decreased in reverse proportion to the roasting temperature and time. The crude fat and crude ash contents were shown to be in the order of steamed black sesame>raw black sesame and roasted black sesame>raw black sesame, Crude protein decreased in reverse proportion to the steaming time, and more crude protein was found in the raw black sesame samples than in the roasted black sesame samples. The contents of sesamin, sesamolin, and total lignans were shown to be in the order of roasted black sesame>raw black sesame>steamed black sesame. In the steamed black sesame samples, sesamin showed its highest level with 20 minutes of treatment, and sesamolin showed its highest level with 15 minutes of treatment. In the roasted black sesame samples, sesamin, sesamolin, and total lignans showed their highest levels with 15 minutes of treatment at $100^{\circ}C$. The phenolic compound content increased in proportion to steaming time in the steamed samples, and reached a peak after 15 minutes of treatment at $100^{\circ}C$, and then decreased after 20 minutes. SOD-like activity reached a peak after 15 minutes of treatment, and in the roasted sample it reached a peak after 15 minutes of treatment, and then decreased after 20 minutes. SOD-like activity was comparatively lower than tocopherol and higher than sesamol. The intensity of electron donating ability, following 30 minute treatments, was shown to be highest in the steamed black sesame samples after 25 minutes of treatment, and next highest in the roasted black sesame samples after 15 minutes at $100^{\circ}C$. The electron donating ability was comparatively lower than tocopherol and sesamol. With regard to lecithin's antioxidant effects, the steamed samples showed a higher oxidation restriction rate in proportion to time, and the roasted samples showed the highest rate after 15 minutes of treatment, and then decreased after 20 minutes of treatment. for hydroxyl radical scavenging, similar scavenging activity to tocopherol, and comparatively higher scavenging activity than sesamol, was shown in all samples: all samples showed scavenging abilities of 90% or higher. In summary, this study applied three different treatment methods to black sesame to determine the optimum treatment conditions, and also examined the antioxidant effects and functional characteristics. The results showed that roasting can be used for other purposes than producing oil, and also suggested that methods other than roasting can be used in a variety of ways in cooking. Also, the different treatment methods can be applied in cooking in a variety of ways, to enhance functionality and preference.

  • PDF

Comparison of Physicochemical Properties and Oxidative Stability of Sesame Oil Mixed with Corn Oil (참기름의 옥배유 혼합에 따른 이화학적 특성 및 산화안정성 비교)

  • 서정희;정윤희;이기동;권중호
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.1
    • /
    • pp.24-28
    • /
    • 1998
  • Korean sesame oil mixed with corn oil and Chinese sesame oil were subjected to instrumental determination for fatty acid composition, sesaminol and sesamin contents, and induction period by AOM test to obtain basic data for ascertaining the truth of pure sesame oil, respectively. In sesame oil mixed with corn oil, stearic acid content of sesame oil containing above 20% corn oil was remarkably discriminated from that of pure sesame oil. Oleic and linoleic acid contents of sesame oil with 10% corn oil were significantly differnt from that of pure sesame oil. Stearicllinoleic acid ratio of sesame oil mixed with corn oil dcreased in proportion to corn oil content in sesame oil. Sesamolin and sesamin contents of sesame oil containing 30% corn oil were lower 18.3% and 21.0% than those of pure sesame oil, respectively. Induction periods of sesame oil by AOM were 8.14~9.24 hrs in Chinese sesame oil and sesame oils including 20% and 40% corn oils, but around 16hrs in Korean pure sesame oil. Based on the above results, it is considered that the comparisons of fatty acids, sesaminol and sesamin contents, and induction period by AOM test might be one of the potential criteria in discriminating between pure sesame oil and sesame oil mixed with corn oil.

  • PDF

Comparison of Components of Sesame Oil Extracted from Sesame Flour and Whole Sesame (참깨가루와 통참깨로 착유한 참기름의 성분 비교)

  • 김성호;김인호;김정옥;이기동
    • Food Science and Preservation
    • /
    • v.9 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • In order to obtain the basal data far quality and sanitary stability of sesame oil extracted from imported sesame flours oil of whole sesame and flour sesame were investigated the proximate composition, chemical properties, fatty acid composition, sesamol, sesamolin, sesamin contents and oxidation induction period by AOM test. Moisture contents of sesame flours were less remarkably than whole sesame. There were no differences in proteins. Acid value and saponiflcation value were higher sesame flour oil than whole sesame oil. iodine value of sesame flour oil were lower than whole sesame oils. In fatty acid composition of sesame oil, contents of linolenic acid and linoleic acid were 222.44 ∼144.14 and 2713.00 ∼ 1776.46 mg/mL, respectively. And the contents of linoleic acid and γ-linoleic acid were lower sesame flour oil than whole sesame oil. The sesamol contents of sesame oil were higher whole sesame oil than sesame flour oil, sesamol content of India whole sesame oil was highest of them. The sesaminl sesamolin contents of Korean whole sesame oil were the Highest Oxidation induction periods of sesame oil by AOM were 6.76 and 13.35 In on north Korea and Chinese sesame flour oil, respectively. Therefore, it appears that oxidative stability was lower in north Korea and China sesame flour oil than in whole sesame oil group.