• Title/Summary/Keyword: Sesame seed oil

Search Result 89, Processing Time 0.04 seconds

Current Status and Prospects of Quality Evaluation in Sesame (참깨의 품질평가 현황과 전망)

  • 류수노;김관수;이은정
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.140-149
    • /
    • 2002
  • Sesame (Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. Sesame seed is known for its high nutritional value and for having oil (51%) and protein (20%) content. The fatty acid composition of sesame oil is palmitic acid (7.8%), stearic acid (3.6%), oleic acid (45.3%), and linoleic acid (37.7%). Sesame oil is characterized by a very high oxidative stability compared with other vegetable oils. Two lignan-type compounds, sesamin and sesamolin, are the major constituents of sesame oil unsaponifiables. Sesamol (a sesamolin derivative) can be present in sesame seeds and oils in very small amount. Other lignans and sesamol are also present in sesame seeds and oils in very small amount as aglycones. Lipid oxidation activity was significantly lower in the sesamolin-fed rats, which suggests that sesamolin and its metabolites contribute to the antioxidative properties of sesame seeds and oil and support that sesame lignans reduce susceptibility to oxidative stress. Sesaminols strongly inhibit lipid peroxidation related to their ability to scavenge free radical. The sesame seed lignan act synergistically with vitamin I in rats fed a low $\alpha$-tocopherol diet and cause a marked increase in a u-tocopherol concentration in the blood and tissue of rats fed an $\alpha$-tocopherol containing diet with sesame seed or its lignan. The authors are reviewed and discussed for present status and prospects of quality evaluation and researched in sesame seeds to provide and refers the condensed informations on their quality.

Influence of Drought Stress on Chemical Composition of Sesame Seed

  • Kim, Kwan-Su;Ryu, Su-Noh;Chung, Hae-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Sesame (Sesamum indicum L.) seeds contain abundant oil and antioxidative lignans related to the seed quality. To evaluate the potential effects of drought stress on the chemical composition of sesame seeds, eighteen cultivars were imposed water-deficit condition by withholding irrigation during 15 days at podding and maturing stage, compared with well-watered plants as control in seed yield and chemical composition. Drought treatments showed great decrease of seed yield with not affecting seed weight. The contents of sesamin and sesamolin decreased while lignan glycosides inversely increased in response to drought stress. Oil content was not significantly changed by drought treatment in spite of its slight decrease. In case of fatty acid composition, there were significant differences in increase of oleic acid while inverse decrease of linoleic acid under drought stress condition. These results demonstrate that the chemical composition of sesame seed may be modified with drought stress. In particular, the increase of sesaminol glucosides with strong antioxidative activity was observed.

Effect of extraction method on sesame oil quality

  • Lee, Byong Won;Kim, Sung Up;Oh, Ki-Won;Kim, Hyun-Joo;Lee, Ji Hae;Lee, Byoung Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.255-255
    • /
    • 2017
  • Sesame has been consumed for centuries as flavoring ingredient in eastern Asian countries, especially Korea. Sesame seeds have been used as health food for traditional medicine to prevent disease in Asian countries for several thousand years. Sesame seed has higher oil content (around 50%) than most of the known oilseeds. Sesame oil is rich in monounsaturated and polyunsaturated fatty acids. Extraction of sesame has developed significantly over the years. The mechanical method was an early means of separation which was physical pressure to squeeze the oil out. Nowadays, solvent extraction becomes the commonly used commercial technique to recover oil from oilseeds. In this study, we investigated extraction efficiency and quality of oil affected by cultivars and extraction methods of sesame seed. Different variables were investigated; roasting temperature ($170{\sim}220^{\circ}C$), extraction methods (solvent and physical pressure), forced ventilation system and cultivars. The Contents of B(a)P in sesame oil after roasting at $170{\sim}220^{\circ}C$ were 0.30~2.53 ppm. When we introduced forced ventilation system during roasting, B(a)P Contents were decreased up to 36%. The Oil extraction efficiency on sesame seed was statistically depending on the cultivars and extraction methods. The oil extraction yields of solvent and physical pressure extraction were 56.3% and 44.6%, respectively. Many of sesame cultivars and genetic resources are linolenic acid content of less than 0.5%. The results supported that we have developed a safe and high quality sesame oil processing methods for small and medium-sized companies.

  • PDF

Varietal Difference of Lignan Contents and Fatty Acids Composition in Korean Sesame Cultivars (국내 참깨 품종의 리그난 함량 및 지방산 조성)

  • 강명화;오명규;방진기;김동휘;강철환;이봉호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.203-206
    • /
    • 2000
  • Although lignans of sesame seed, sesamolin and sesamin have been known as possessing an antioxidant activity, it is less known about their contents of the sesame cultivated in Korea. Collections of sesame cultivated in Korea were used for studies on their lignans content of the seed and fatty acids composition of the oil. The sesamin content of sesame seed with white-coat were 370.29 mg/100g seed, while that of sesame seed with black-coat were 246.58mg/100g seed. Also, the sesamolin contents of sesame seed were 202.22 mg/100g seed in white-coat cultivars and 132.68 mg/100g seed in black-coat sesames. Hence, the lignan content of white-coat sesame cultivars was significantly hi임or than that of black-coat ones. Korean sesame cultivars also showed considerably higher sesamin content than sesamolin content in seeds. The correlation between sesamin and sesamolin contents was not recognized in Korean sesame cultivars. The stearic acid of white-coat sesame was significantly higher than that of black-coat one (p<0.05).

  • PDF

Studies on the Sterol of Sesame Oil Sold In Markets and Used in Restaurants (시중(市中) 참기름의 Sterol에 관(關)한 연구(硏究))

  • Ro, Ihl-Yeob;Jeong, Hee-Sun
    • Journal of Nutrition and Health
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 1980
  • Methods for the determination of sterols in sesame oils were studied. The sesame oils were saponified and the sterols isolated from the unsaponifiable matter by Florisil column chromatography, and the individual components were determined by means of gas chromatography. Campesterol, ${\beta}-sitosterol$, stigmasterol were found in sesame oil including unknown Ⅰ and Ⅱ. The use of SE-30 gas chromatographic column allows the slow elution, duplication of peaks and relatively low reproducibility, therefore, 3% OV-17 was suitable for the sterol analysis. The result of this study showed that contents of sterols in sesame oil were campesterol 8.4%, stigmasterol 4.5%, ${\beta}-sitosterol$ 33.9% and others 53.0% involving 8.8% of unknown I and 44.3% of unknown Ⅱ. There has been no specific test available for identifying the sesame oil among common edible oils. But the ratio of sterols in sesame oils allowed the estimation of genuiness. The ratio of sterols vs. campesterol in genuine sesame oils were stigmasterol 0.3- 0.6, ${\beta}-sitosterol$ 3.0-3.8 and unknown Ⅱ 3.0, respectively. The 65 samples were composed of genuine sesame oil 40%, mixed rape seed oil 3%, cotton seed oil 1. 5% others were reused soybean oil or re-extracted oil.

  • PDF

Studies on Quality Evaluation of Current Sesame Oils Sold in Markets (시중 유통참기름의 품질평가에 관한 연구)

  • 박재홍;김순천;조성완;김은선;최경철;김영국;임태곤
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.1
    • /
    • pp.57-66
    • /
    • 1991
  • In the present study, an attempt was made to use FV (Fatty acid ratio & Villavecchia reaction) value determination as a reliable method for the detection and analysis of the adulteration of sesame oils. FV value was defined as fatty acid ratio, C18 : I + C18 : 2/C16 : ${\times}C18$ : 3, times modified Villavecchia-Suarez test value. Seventy-four sesame oils collected from markets were evaluated using this method. Only II among 74 collected sesame oils were found to be pure sesame oil by FV value determination. In 63 adulterated sesame oils, it was revealed 23 samples were adulterated soybean oil, to with rice bran oil, 10 with sesame dregs extract oil, 8 with perilla seed oil, 7 with corn oil, 3 with cotton seed oil, and 2 with rape seed oil.

  • PDF

Minimizing Benzo(a)pyrene Content in the Manufacturing of Sesame Oil and Perilla Oil (참기름과 들기름의 제조조건에 따른 벤조피렌 함량 변화)

  • Kim, Hyong-Yol;Song, Dae-Sik
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2008
  • This study was carried out to identify the cause of benzo(a)pyrene[B(a)P] production during the manufacture of sesame oil and perilla oil, and to minimize such B(a)P synthesis. The distribution of B(a)P in sesame seed and perilla seed differed with seed-growing district, the range was $0.06{\sim}0.31{\mu}g/kg$ in domestic seed and $0.12{\sim}0.47{\mu}g/kg$ in imported seed. B(a)P contents after roasting at $220^{\circ}C$ for 20 min in sesame seed and perilla seed were $1.87{\sim}2.47{\mu}g/kg$ and $2.12{\sim}2.43{\mu}g/kg$, respectively, and levels in oils obtained from the roasted seeds were $3.68{\mu}g/kg$ and $4.64{\mu}g/kg$, respectively. These data refer to seeds subjected to codsed roasting. With open roasting, the levels were $0.63{\mu}g/kg$ and $0.56{\mu}g/kg$, respectively. Closed roasting resulted in absorption of B(a)P, with consequent high levels in oils. We introduced forced ventilation during closed roasting. We tested various methods to remove B(a)P from sesame oil and perilla oil. Neither centrifugation nor filtering with diatomite and diatomiteactive carbon removed B(a)P. A filtering method using active carbon was effective. But this method adversely affected the color and flavor of sesame oil and perilla oil.

Interpretation of Agronomic Traits Variation of Sesame Cultivar Using Principal Component Analysis

  • Shim, Kang-Bo;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Jang-Whan;Byun, Jae-Cheon;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • This study was conducted to evaluate the growth characters and yield components of 18 collected sesame cultivars to get basic information on the variation for the sesame breeding using principal component analysis. All characters except days to flowering, days to maturity and 1,000 seed weight showed significantly different. Seed weight per 10 are showed higher coefficient of variance. Capsule bearing stem length and liter weight showed positive correlation with seed yield per 10 are. The principal components analysis grouped the estimated sesame cultivars into four main components which accounted for 83.7% of the total variation at the eigenvalue and its contribution to total variation obtained from principal component analysis. The first principal component ($Z_1$) was applicable to increase plant height, capsule bearing stem length and 1,000-seed weight. The second principal component ($Z_2$) negatively correlated with days to flowering and maturity by which it was applicable to shorten flowering and maturity date of sesame. At the scatter diagram, Yangbaek, Ansan, M1, M2, M4, M7 and M9 were classified as same group, but M10, Yanghuk, Kanghuk, M5, M6, M12 and M13 were classified as different group. This results would be helpful for sesame breeder to understand genetic relationship of some agronomic characters and select promising cross lines for the development of new sesame variety.

Discrimination of Oil Seeds According to Geographical Origin Using Near Infrared Reflectance Spectroscopy (근적외선 분광분석법을 이용한 유량종자의 원산지 판별)

  • Kwon, Hye-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.21-24
    • /
    • 1999
  • Sesame seed (Sesamum indicum L.) is an important seasoning in Korea and most korean consumer tend to eat the korean sesame seed as the best than other ones produced in oriental countries such as China and Japan. Near infrared reflectance spectroscopy (NIRS) was applied for discrimination according to geographical origin (Korea, China and so on) of sesame seeds. Near-infrared spectroscopy among the many kinds of techniques could provide a rapid screening, low cost solution to discriminate geographical origin of sesame seed. The objective of this study is to determine if NIR technique could be used to discriminate between the korean sesame seed and non-korean sesame seed by using the new method. Rapid, precise and nondestructive analysis method for determination of the geographic origin of sesame seeds were discriminated relative accurately according to geographical origin using PLS regression method.

Influence of roasting conditions on the flavor quality of sesame seed oil (참깨 볶음조건이 참기름의 향미에 미치는 영향)

  • Lee, Young-Guen;Lim, Sun-Uk;Kim, Jeong-Ok
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.407-415
    • /
    • 1993
  • Sesame seeds were roasted for 30, 60, 90, and 120 min at different temperatures (100, 200, and $300^{\circ}C$) and extracted to investigate an adequate condition for producing the high quality sesame oil. Sesame seeds roasted at $200^{\circ}C$ for 90 min gave the high yield of oil. The oil contained the low content of brownish-black precipitates and exhibited an excellent organoleptic quality when judged by descriptive sensory analysis. Thirty one volatile flavor compounds, which are the largest number of volatiles among the oil samples prepared, were identified from the oil sample. The oil contained relatively high concentrations of furfurals (sweet candy-like flavor) and pyrazines (roasted-like flavor), that are considered as good contributors to sesame seed oil flavor, and low concentations of aldehydes $(C5{\sim}C10)$ and ketones, which are considerd as bad contributors (oxidized fat-like and painty-like flavors). These results suggest that the roasting condition of $200^{\circ}C$ for 90 min was the best for the oil production in terms of the overall aroma and taste quality under the test conditions (Received July 13, 1993; accepted November 4, 1993).

  • PDF