• 제목/요약/키워드: Servo-Manipulator

검색결과 86건 처리시간 0.031초

여유 자유도를 갖는 서보 매니퓰레이터의 내고장 제어를 위한 재형상 기법 (Reconfiguration of Redundant Joints for Fault Tolerance of a Servo Manipulator)

  • 박병석;안성호;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.899-906
    • /
    • 2004
  • In this paper, fault tolerant algorithm is presented for a servo manipulator system. For fault tolerance of a servo manipulator system, reconfiguration algorithm accommodating a motor's failure has been presented. The algorithm considers a transport's degree of freedoms as redundant joints of a servo manipulator. The reconfiguration algorithm recovers the end effector's motion in spite of one motor's failure A modified pseudo inverse redistribution method has been proposed for the reconfiguration algorithm. Numerical examples and hardware tests have been presented to verify the proposed methods.

A Robust PID Control Algorithm for a Servo Manipulator with Friction

  • Jin, Jae-Hyun;Park, Byung-Suk;Lee, Hyo-Jik;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2275-2278
    • /
    • 2005
  • In this paper, a control algorithm for a servo manipulator is focused on. A servo manipulator system has been developed for remotely handling radioactive materials in a hot cell. It is driven by servo motors. The torque from a servo motor is transferred through a reducer to the corresponding axis. The PID control algorithm is a simple and effective algorithm for such application. However, since friction degrades the algorithm's performance, friction has to be considered and compensated. The major aberrations are the positional tracking errors and the limit cycle. The authors have considered a switching term to a conventional PID algorithm to reduce the friction's effect. It has been tested by a hardware test.

  • PDF

Fault Tolerance Design for Servo Manipulator System Operating in a Hot Cell

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2467-2470
    • /
    • 2003
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors are weak to radiations, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, hardware and software redundancy have been considered. In case of hardware, radioactive resistant electric components such as cables and connectors have been adopted and motors driving a transport have been duplicated. In case of software, a reconfiguration algorithm accommodating one motor's failure has been developed. The algorithm uses redundant axis to recover the end effector's motion in spite of one motor's failure.

  • PDF

여유 자유도에 대한 조종력 배분을 통한 원격작업용 서보 매니퓰레이터의 내고장 제어 (Fault Tolerant Control of a Servo Manipulator for Teleoperation by Control Allocation to Redundant Joints)

  • 진재현;박병석;안성호;윤지섭
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.235-245
    • /
    • 2004
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle the radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors may fail by radiation, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, duplication mechanism increasing the reliability of the transport's driving motors and reconfiguration algorithm accommodating the slave's motor failure have been presented. The reconfiguration algorithm recovering the end effector's motion in spite of one motor's failure is based on control allocation redistributing redundant axes. The constrained optimization method and pseudo inverse method have been adopted for control allocation. Simulation examples and real test results have been presented to verify the Proposed methods.

핫셀용 서보 매니퓰레이터 시스템의 내고장 설계 (Fault tolerant design of a Servo Manipulator System for Hot Cell Operation)

  • 진재현;박병석;안성호;윤지섭;정재후
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1464-1469
    • /
    • 2003
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle the radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors are weakened with radiation, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, hardware and software redundancy has been considered. In the case of hardware, radioactive resistant electric components such as cables and connectors have been adopted and motors driving a transport have been duplicated. In case of software, a reconfiguration algorithm accommodating one motor's failure has been developed. The algorithm uses redundant axes to recover the end effector's motion in spite of one motor's failure.

  • PDF

움직이는 원통형 물체를 잡는 매니퓰레이터를 위한 레이저 거리계 기반의 서보시스템 (LRF-Based Servo System for a Manipulator Grasping Moving Cylinders)

  • 천홍석;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.263-272
    • /
    • 2008
  • We implemented a real-time servo system for a manipulator based on Laser Range Finder (LRF). and established algorithms for grasping a moving cylinder. We devised a manipulator mechanism and driving hardware based on a system board equipped with Xscale Processor with real-time operating system RTAI on Linux. The manipulator motor driver is connected to the system board via CAN communication link, and LRF is connected via RS-232C. We implemented real-time software including CAN device driver, RS-232C device driver, manipulator trajectory generator, and LRF control software. A typical application experiment for grasping a cylinder with circle motion demonstrated our system's real-time performance.

공기압 액츄에이터의 시간지연을 고려한 최적 서보제어 (Optimal servo control of pneumatic actuator with time-delay)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1455-1458
    • /
    • 1996
  • In this paper trajectory tracking control problems are described for a robot manipulator by using pneumatic actuator. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with input time-delay by the step response. Then, an optimal servo controller is designed by taking account of such a time-delay. The effectiveness of the proposed control method is illustrated through some simulations and experiments for the robot manipulator.

  • PDF

사용후 핵연료 차세대관리공정 원격 운전/유지보수용 천정이동 서보 매니퓰레이터 시스템 개발 (Development of a Bridge Transported Servo Manipulator System for the Remote Operation and Maintenance of Advanced Spent Fuel Conditioning Process)

  • 박병석;이종광;이효직;최창환;윤광호;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.940-948
    • /
    • 2007
  • The Advanced Spent Fuel Conditioning Process(ACP), which is the process of the reduction of uranium oxide by lithium metal in a high temperature molten salt bath for spent fuel, was developed at Korea Atomic Energy Research Institute (KAERI). Since the ACP equipment is located in an intense radiation field (hot cell) as well as in a high temperature, it must be remotely operated and maintained. The ACP hot cell is very narrow so the workspace of the wall-mounted mechanical Master-Slave Manipulators(MSMs) is restricted. A Bridge Transported Servo Manipulator(BTSM) system has been developed to overcome the limitation of an access that is a drawback of the mechanical MSMs. The BTSM system consists ot a bridge crane with telescoping tubeset, a slave manipulator, a master manipulator, and a control system. We applied a bilateral position-position control scheme with friction compensation as force-reflecting controller. In this paper, the transmission characteristics on the tendon-and-pulley train is numerically formulated and analyzed. Also, we evaluate the performance of the force-reflecting servo manipulator.

매니퓨레이터 서보제어와 궤도 계획 (Servo control of a manipulator and trajectory planning)

  • 최진태;박상덕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.135-139
    • /
    • 1990
  • In general, the control of robot arms falls into two board categories (position control and force control). The joint interpolated trajectory schemes generally interpolate the desired joint path by a class of polynomial functions and generate a sequence of time based control set points for the control of a manipulator from a initial location to its destination. A digital position controller was designed and adapted to the industrial balancing manipulator. And also, the joint interpolated trajectory using 3rd order polynomial was generated in this study. The IBM PC used as the main controller and the trajectory planner had enough run-time capabilities. The 8097BH microcontroller is an integral pan of the joint controller which directly controls an axis of motion. The PI servo control system to treat each joint of the robot arm as a independent joint servo mechanism had satisfying performance, and a sequence of time-based intermediate configurations of the manipulator hand showed good continuity and smoothness on position and velocity of the manipulator's joint coordinates along the trajectory.

  • PDF

Design of a Bridge Transported ServoManipulator System for a Radioactive Environment

  • Park, B.S.;Jin, J.H.;Ahn, S.H.;Song, T.G.;Kim, D.G.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2514-2518
    • /
    • 2003
  • The KAERI Spent Fuel Remote Technology Development (SFRTD) Department is developing the remote maintenance and repair equipment, which is used in a hot cell in an intense radiation field, as part of a project to develop the Advanced spent fuel Conditioning Process (ACP). Although several mechanical master-slave manipulators (MSMs) is mounted on the hot cell wall, their reach will be limited and cannot access areas for all the ACP equipment maintenance. A Bridge Transported ServoManipulator (BTSM) has been designed to overcome the limitation of access areas that is a drawback of MSMs for the ACP equipment maintenance. The BTSM system consists of four components: a transporter with telescoping tubeset, a slave manipulator, a master manipulator, and a remote control system. The BTSM system has been designed by Solid Edge that is a 3D computer-aided design (CAD) software, except for the remote control system. The master manipulator and the slave manipulator are kinematically similar in design, except for the handle and the tong, respectively. The manipulators have 6 degrees of freedom (DOF) plus the jaws motion. The transporter has traveling, traverse, and hoisting motion to position the slave manipulator.

  • PDF