• Title/Summary/Keyword: Servo Bandwidth

Search Result 53, Processing Time 0.022 seconds

A Study on the Driving Principles of a Novel Non-contact Surface Actuator Using Combination of Magnetic Force (비접촉 평면 구동기의 자기력 조합 방식 구동 원리)

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2001
  • In micro automation technology, the concurrent realization of a high resolution and a large operating rage has been achieved by a dual actuator, usually called by piggy-back system, conventionally. But, because of its manufacturing cost, the complexity of control, and the limit of overall bandwidth, the contract-free and single servo actuators have been suggested with specific applications. In this paper, we suggest a novel non-contact surface actuator suing combination of the Lorentz force and the magnetized force, and discuss the actuating principles including an analytical approach. Differently from the existing planar system, an operating range of the suggested system can be expanded by an additional attachment of active elements. Therefore, it is estimated to be suitable for the next-generation moving system.

  • PDF

Robust Controller of Hydraulic Servo System with Large Inertia Load (고유 진동수 및 댐핑이 작은 유압 서보 제어 시스템에서의 강인 제어기 응용)

  • 진성무;임상묵;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.289-292
    • /
    • 1995
  • 근래에 서보 제어용 엑투에에터의 사용 경향은, 전기 서보 모터 및 그 제어 기술의 발전으로, 중간 용량이내의 제어 시스템 분야에서 전기 서보 모터를 사용한 시스템의 채용이 급증하고 있는 추세이다. 본 연구에서는 고유 진동수 밍 댐핑이 적은 유압 서보 시스템에 소프트웨어적인 방법으로 부하 압력 또는 가속도를 궤환시키는 방법을 적용하여 시 스템의 bandwidth를 유압 시스템의 고유 진동수 영역까지 확대 시키고, 응답 특성의 신뢰성을 증가시키기 위해 직렬 제어기가 없을 경우에는 적용이 어려운 강인 제어기 (robust controller)를 압력 또는 가속도 궤환제어기의 앞 부 분에 직렬로 배치하여 실험을 통하여 그 성능을 관찰한다.

  • PDF

Optimal Design of a Near-field Optical Recording Suspension (근접장 광기록용 서스펜션의 최적설계)

  • 조태민;임경화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1146-1151
    • /
    • 2003
  • So far the study of near-field optical recording(NFR) suspensions has not been investigated sufficiently. In this study the optimization of a NFR suspension is performed using finite element method. NFR suspensions are required to have low compliance modes to allow the slider to comply with the rotating disk, and high tracking stiffness modes to maximize the servo bandwidth of the tracking controller First of all, a basic integrated type suspension model is obtained using topology optimization And the parametric study on the sensitivities of the compliance modes and tracking stiffness modes is performed. Finally, a model satisfying static characteristics is elected and shape optimization is performed to improve dynamic characteristics.

  • PDF

Analysis on the Dynamic Characteristics of an Optical Storage Drive (광 정보저장 드라이브의 동적 특성 해석)

  • Nam, Yoon-Su;Lim, Jong-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.149-158
    • /
    • 1999
  • The modern trends of optical storage devices can be characterized by high density in information recording, and high bandwidth in data input/output processing rate. These make servo engineers to face with a new barrier on control system design in much more difficult way. The first step to attack this barrier will be through a systematic modeling for the dynamic characteristics of optical storage drive. in this paper, an analytical dynamic model for an optical storage drive based on FEM is drived, and compared with experimental results. Through this comparison, a practical dynamic model on the focusing and tracking motion of optical storage drive is proposed for the initiation of real control system design problem.

  • PDF

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

Design of Moving Magnet Type Optical Pickup Actuator with High Frequencies of the Flexible Modes (높은 유연 모드 주파수를 갖는 가동 자석형 광 픽업 액추에이터 개발)

  • Song, Myeong-Gyu;Kim, Yoon-Ki;Park, Young-Pil;Yoo, Jeong-Hoon;Park, No-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1043-1049
    • /
    • 2007
  • Data transfer rate and storage capacity are main criteria of the performance of the optical disk drive. The highest data transfer rate and the largest storage capacity is most desirable. To increase these performances, the actuator of the optical disk drive should have a high servo bandwidth to compensate the vibration of an optical disk. The servo bandwidth is limited by some flexible modes of the actuator, thus it is essential to increase the natural frequencies of the flexible modes. In this paper, we suggested a moving magnet type actuator having high frequencies of the flexible modes. Generally, the moving magnet type actuator has an advantage to increase the natural frequencies of the flexible modes because the moving magnet type actuator has simple structure and the Young's modulus of magnet is high. However, large moving mass and inefficiency of EM(electromagnetic) circuit cut down driving sensitivities of the actuator. To improve driving sensitivities, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, driving sensitivities and the natural frequencies of the flexible modes were improved by using DOE(design of experiments) for electromagnetic circuit and modifying the lens holder.

A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter (적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.274-283
    • /
    • 2006
  • The Permanent Magnet Synchronous Motor(PMSM) drive systems with ball-screw, gear and timing-belt are widely used in industrial applications such as NC machine, machine tools, robots and factory automation. These systems have torsional vibration in torque transmission from servo motor to mechanical load due to the mechanical couplings. This vibration makes it difficult to achieve quick responses of speed and may result in damage to the mechanical plant. This paper presents adaptive notch filter with auto searching function of vibration frequency to reject the mechanical vibration of linear feeder system with PMSM. The proposed adaptive notch filter can suppress the torque command signal of PMSM in the resonant bandwidth for reject the mechanical torsional vibration. However, the resonant frequency can vary with conditions of mechanical load system and coupling devices, adaptive notch filter can auto search the vibration frequency and suppress the vibration signal bandwidth. Computer simulation and experimental results shows the verification of the proposed adaptive notch filter in linear feeder system with PMSM.

Analysis of the Characteristics of the Feed motor Current for the Estimation of the Cutting Force in General Cutting Environment (일반적 상황에서 2차원 절삭력 추정을 위한 이송모터 전류의 거동분석)

  • Jeong, Young-Hun;Yun, Seong-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.93-100
    • /
    • 2002
  • The current from the feed motor of a machine tool contains substantial information about the machining state. There have been many researches that investigated the current as a measure for the cutting farces. However it has been reported that this indirect measurement of the cutting farces from the feed motor current is only feasible in low frequency. In this research, it was presented that the bandwidth of the current monitoring can be expanded to 130 Hz. And the unusual behavior of the current was examined in this bandwidth. The cross-feed directional cutting force influences the machined surface of the workpiece, which makes it necessary to estimate this force to control the roughness of the machined sulfate. The current exists in the stationary feed motor, and it can give the useful information on the quality of the machined surface. But the unpredictable behavior of the current prevents applying the current to prediction of the cutting state. Empirical approach was conducted to resolve the problem. As a result, the current was shown to be related to the accumulation of the accumulation of the infinitesimal rotation of the motor. rotation of the motor. Subsequently the relationship between the current and the cutting force was identified.

Design of Moving Coil Type Optical Pickup Actuator for Flexible Disk (유연디스크용 가동 코일형 광 픽업 엑추에이터 개발)

  • Kim, Yoon-Ki;Song, Myeong-Gyu;Lee, Dong-Ju;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.479-483
    • /
    • 2006
  • As high-definition television(HDTV) broadcasting were generalized, there have been many researches and developments about large storage capacity and fast data transfer rate in optical disk drives(ODD). Pickup actuators must have high flexible mode frequencies and gain margins. Flexible modes are caused by the flexibility of moving parts in the actuator and a servo bandwidth is limited by them. As a result, the system becomes unstable for high-speed operations in high density reading and recording. In this paper, we suggest improved modeling method that considers the bonding layer. And, flexible mode frequency of actuator is improved by Design of Experiment of lens holder. Magnet circuit is designed considering the relation with moving part. Through improving yoke design, the magnetic flux is changed and DC tilt is reduced. Consequently, we designed actuator which has high flexible mode frequency and gain margins.

  • PDF

Analysis and Reduction of Subsidiary Resonance of an Optical Pickup Actuator (광 픽업 액추에이터의 부공진 원인 규명과 저감화)

  • Seo, Jin-Gyu;Jeong, Ho-Seop;Park, Gi-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.728-734
    • /
    • 2000
  • An asymmetric actuator can be used to reduce the distance between the reflective mirror and objective lens of a small optical disk drive for use in the notebook-sized personal computer data storage devices. However, this asymmetric actuator is very sensitive to the subsidiary resonance which is caused by its rigid body motion. In this paper, an analytical approach using a simple lumped parameter system model is presented with a physical insight to investigate why the subsidiary resonance occurs. The finite element method is used to figure out the force and torque characteristics of the asymmetric actuator which are essential to understand the subsidiary vibration characteristics. The frequency responses are presented to examine how the subsidiary resonance is altered for various situations of having different thickness of a yoke and permanent magnet and of having a different magnet circuit. Finally, the design guidelines to avoid the subsidiary resonance will be presented.