• Title/Summary/Keyword: Service Prototyping

Search Result 43, Processing Time 0.021 seconds

On the Study of Developement for Urban Meteorological Service Technology (도시기상서비스 기술 개발에 관한 연구)

  • Choi, Young-Jean;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.149-157
    • /
    • 2011
  • Urbanization of the world's population has given rise to more than 450 cities around the world with populations in excess of 1 million (megacity) and more than 25 so-called metacities with populations over 10 million (Brinkhoff, 2010). The United States today has a total resident population of more than 308,500,000 people, with 81 percent residing in cities and suburbs as of mid - 2005 (UN, 2008). Urban meteorology is the study of the physics, dynamics, and chemistry of the interactions of Earth's atmosphere and the urban built environment, and the provision of meteorological services to the populations and institutions of metropolitan areas. While the details of such services are dependent on the location and the synoptic climatology of each city, there are common themes, such as enhancing quality of life and responding to emergencies. Experience elsewhere (e.g., Shanghai, Helsinki, Tokyo, Seoul, etc.) shows urban meteorological support is a key part of an integrated or multi-hazard warning system that considers the full range of environmental challenges and provides a unified response from municipal leaders. Urban meteorology has come to require much more than observing and forecasting the weather of our cities and metropolitan areas. Forecast improvement as a function of more and better observations of various kinds and as a function of model resolution, larger ensembles, predicted probability distributions; Responses of emergency managers, government officials, and users to improved and probabilistic forecasts; Benefits of improved forecasts in reduction of loss of life, property damage, and other adverse effects. A national initiative to enhance urban meteorological services is a high-priority need for a wide variety of stakeholders, including the general, commerce and industry, and all levels of government. Some of the activities of such an initiative include: conducting basic research and development; prototyping and other activities to enable very--short and short range predictions; supporting and improving productivity and efficiency in commercial and industrial sectors; and urban planning for long term sustainability. In addition urban test-beds are an effective means for developing, testing, and fostering the necessary basic and applied meteorological and socioeconomic research, and transitioning research findings to operations. An extended, multi-year period of continuous effort, punctuated with intensive observing and forecasting periods, is envisioned.

Development of the Information Delivery System for the Home Nursing Service (가정간호사업 운용을 위한 정보전달체계 개발 I (가정간호 데이터베이스 구축과 뇌졸중 환자의 가정간호 전산개발))

  • Park, J.H;Kim, M.J;Hong, K.J;Han, K.J;Park, S.A;Yung, S.N;Lee, I.S;Joh, H.;Bang, K.S
    • Journal of Home Health Care Nursing
    • /
    • v.4
    • /
    • pp.5-22
    • /
    • 1997
  • The purpose of the study was to development an information delivery system for the home nursing service, to demonstrate and to evaluate the efficiency of it. The period of research conduct was from September 1996 to August 31, 1997. At the 1st stage to achieve the purpose, Firstly Assessment tool for the patients with cerebral vascular disease who have the first priority of HNS among the patients with various health problems at home was developed through literature review. Secondly, after identification of patient nursing problem by the home care nurse with the assessment tool, the patient's classification system developed by Park (1988) that was 128 nursing activities under 6 categories was used to identify the home care nurse's activities of the patient with CAV at home. The research team had several workshops with 5 clinical nurse experts to refine it. At last 110 nursing activities under 11 categories for the patients with CVA were derived. At the second stage, algorithms were developed to connect 110 nursing activities with the patient nursing problems identified by assessment tool. The computerizing process of the algorithms is as follows: These algorithms are realized with the computer program by use of the software engineering technique. The development is made by the prototyping method, which is the requirement analysis of the software specifications. The basic features of the usability, compatibility, adaptability and maintainability are taken into consideration. Particular emphasis is given to the efficient construction of the database. To enhance the database efficiency and to establish the structural cohesion, the data field is categorized with the weight of relevance to the particular disease. This approach permits the easy adaptability when numerous diseases are applied in the future. In paralleled with this, the expandability and maintainability is stressed through out the program development, which leads to the modular concept. However since the disease to be applied is increased in number as the project progress and since they are interrelated and coupled each other, the expand ability as well as maintainability should be considered with a big priority. Furthermore, since the system is to be synthesized with other medical systems in the future, these properties are very important. The prototype developed in this project is to be evaluated through the stage of system testing. There are various evaluation metrics such as cohesion, coupling and adaptability so on. But unfortunately, direct measurement of these metrics are very difficult, and accordingly, analytical and quantitative evaluations are almost impossible. Therefore, instead of the analytical evaluation, the experimental evaluation is to be applied through the test run by various users. This system testing will provide the viewpoint analysis of the user's level, and the detail and additional requirement specifications arising from user's real situation will be feedback into the system modeling. Also. the degree of freedom of the input and output will be improved, and the hardware limitation will be investigated. Upon the refining, the prototype system will be used as a design template. and will be used to develop the more extensive system. In detail. the relevant modules will be developed for the various diseases, and the module will be integrated by the macroscopic design process focusing on the inter modularity, generality of the database. and compatibility with other systems. The Home care Evaluation System is comprised of three main modules of : (1) General information on a patient, (2) General health status of a patient, and (3) Cerebrovascular disease patient. The general health status module has five sub modules of physical measurement, vitality, nursing, pharmaceutical description and emotional/cognition ability. The CVA patient module is divided into ten sub modules such as subjective sense, consciousness, memory and language pattern so on. The typical sub modules are described in appendix 3.

  • PDF

Development Process for User Needs-based Chatbot: Focusing on Design Thinking Methodology (사용자 니즈 기반의 챗봇 개발 프로세스: 디자인 사고방법론을 중심으로)

  • Kim, Museong;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.221-238
    • /
    • 2019
  • Recently, companies and public institutions have been actively introducing chatbot services in the field of customer counseling and response. The introduction of the chatbot service not only brings labor cost savings to companies and organizations, but also enables rapid communication with customers. Advances in data analytics and artificial intelligence are driving the growth of these chatbot services. The current chatbot can understand users' questions and offer the most appropriate answers to questions through machine learning and deep learning. The advancement of chatbot core technologies such as NLP, NLU, and NLG has made it possible to understand words, understand paragraphs, understand meanings, and understand emotions. For this reason, the value of chatbots continues to rise. However, technology-oriented chatbots can be inconsistent with what users want inherently, so chatbots need to be addressed in the area of the user experience, not just in the area of technology. The Fourth Industrial Revolution represents the importance of the User Experience as well as the advancement of artificial intelligence, big data, cloud, and IoT technologies. The development of IT technology and the importance of user experience have provided people with a variety of environments and changed lifestyles. This means that experiences in interactions with people, services(products) and the environment become very important. Therefore, it is time to develop a user needs-based services(products) that can provide new experiences and values to people. This study proposes a chatbot development process based on user needs by applying the design thinking approach, a representative methodology in the field of user experience, to chatbot development. The process proposed in this study consists of four steps. The first step is 'setting up knowledge domain' to set up the chatbot's expertise. Accumulating the information corresponding to the configured domain and deriving the insight is the second step, 'Knowledge accumulation and Insight identification'. The third step is 'Opportunity Development and Prototyping'. It is going to start full-scale development at this stage. Finally, the 'User Feedback' step is to receive feedback from users on the developed prototype. This creates a "user needs-based service (product)" that meets the process's objectives. Beginning with the fact gathering through user observation, Perform the process of abstraction to derive insights and explore opportunities. Next, it is expected to develop a chatbot that meets the user's needs through the process of materializing to structure the desired information and providing the function that fits the user's mental model. In this study, we present the actual construction examples for the domestic cosmetics market to confirm the effectiveness of the proposed process. The reason why it chose the domestic cosmetics market as its case is because it shows strong characteristics of users' experiences, so it can quickly understand responses from users. This study has a theoretical implication in that it proposed a new chatbot development process by incorporating the design thinking methodology into the chatbot development process. This research is different from the existing chatbot development research in that it focuses on user experience, not technology. It also has practical implications in that companies or institutions propose realistic methods that can be applied immediately. In particular, the process proposed in this study can be accessed and utilized by anyone, since 'user needs-based chatbots' can be developed even if they are not experts. This study suggests that further studies are needed because only one field of study was conducted. In addition to the cosmetics market, additional research should be conducted in various fields in which the user experience appears, such as the smart phone and the automotive market. Through this, it will be able to be reborn as a general process necessary for 'development of chatbots centered on user experience, not technology centered'.