• Title/Summary/Keyword: Service/Frequent earthquake

Search Result 6, Processing Time 0.019 seconds

A methodology for design of metallic dampers in retrofit of earthquake-damaged frame

  • Zhang, Chao;Zhou, Yun;Weng, Da G.;Lu, De H.;Wu, Cong X.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.569-588
    • /
    • 2015
  • A comprehensive methodology is proposed for design of metallic dampers in seismic retrofit of earthquake-damaged frame structures. It is assumed that the metallic dampers remain elastic and only provide stiffness during frequent earthquake (i.e., earthquake with a 63% probability of exceedance in 50-year service period), while in precautionary earthquake (i.e., earthquake with a 10% probability of exceedance in 50-year service period), the metallic dampers yield before the main frame and dissipate most of the seismic energy to either prevent or minimize structural damages. Therefore by converting multi-story frame to an equivalent single-degree-of-freedom system, the added stiffness provided by metallic dampers is designed to control elastic story drifts within code-based demand under frequent earthquake, and the added damping with the combination of added stiffness influences is obtained to control structural stress within performance-based target under precautionary earthquake. With the equivalent added damping ratio, the expected damping forces provided by metallic dampers can be calculated to carry out the configuration and design of metallic dampers along with supporting braces. Based on a detailed example for retrofit of an earthquake-damaged reinforced concrete frame by using metallic dampers, the proposed design procedure is demonstrated to be simple and practical, which can not only meet current China's design codes but also be used in retrofit design of earthquake-damaged frame with metallic damper for reaching desirable performance objective.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

The Campus of University Earthquake Disaster Prevention Planning - The Research of Spatial Pattern Based on GIS

  • Mi, Shan;Piao, Yong-Ji;Zhang, Rui;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1213-1221
    • /
    • 2014
  • In the background of rapid urbanization and frequent earthquakes, earthquake disaster prevention planning has become an important topic of current research. Universities are irreplaceable disaster shelter, as they are public institutions with a lot of open space. This article puts forward the concept of "disaster prevention campus". With the refuge behavioral and psychological characteristics of people in the campus when the earthquake happens, it integrated uses GIS spatial analysis technique, takes Shandong Agricultural University as an example, and studies the spatial pattern of earthquake disaster prevention planning in campus from five aspects. The aspects include building distribution, population distribution, analysis of service radius, infrastructure configuration and choice of the optimal refuge path. On the basis of researches above, reform proposals and specific strategies are put forward to build the safe and harmonious disaster prevention campus.

Application of Buckling Restrained Braces in a 50-Storey Building

  • Sy, Jose A.;Anwar, Naveed;Aung, Thaung Htut;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • The use of Buckling Restrained Braces (BRB) for enhancing the performance of the buildings is gaining wider acceptance. This paper presents the first application of these devices in a major high-rise building in the Philippines. A 50-storey residential reinforced concrete building tower, with ductile core wall, with BRB system is investigated. The detailed modeling and design procedure of buckling restrained brace system is presented for the optimal design against the two distinct levels of earthquake ground motions; serviceable behavior for frequent earthquakes and very low probability of collapse under extremely rare earthquakes. The stiffness and strength of the buckling restrained brace system are adjusted to optimize the performance of the structural system under different levels of earthquakes. Response spectrum analysis is conducted for Design Basis Earthquake level and Service level, while nonlinear time history analysis is performed for the most credible earthquake. The case study results show the effectiveness of buckling restrained braces.

Evaluation of Seismic Performance of Steel Frame before and after Application of Seismic Isolator (면진 장치 적용 전, 후의 철골조의 내진 성능 평가)

  • 김대곤;이상훈;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1998
  • The laminated elastomeric bearing and the lead-rubber bearing were designed to isolate one bay-two story steel frame which is designed for only gravity load. The seismic performance is evaluated for the designed steel frame before and after application of these seismic isolators between the super structure and the foundation. These isolators can improve the seismic capacity of the steel frame. Especially, by inserting the lead plug into the center of the laminated elastomeric bearing, the initial stiffness of th bearing can be increased, thus rather large lateral displacement can be prevented under the frequent service lateral load. During the strong earthquake, yielding of the lead can increase the capacity of the energy dissipation.

  • PDF

Analysis of the Situation of the Volunteer Fire Brigade in Japan (일본 의용소방대 실태의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.44-50
    • /
    • 2011
  • Japan has a very advanced volunteer fire brigade system as an interdependent organization by local residents due to frequent natural disasters. Japan has fostered and developed the volunteer fire brigade in the national level to response rapidly and appropriately to earthquake or natural disasters even in the urban area that has sufficient fire stations and fire officers. This study analyzes the situation of operating the volunteer fire brigade in Japan in detail and compares the result with Korean situation. Finally, this study suggests policies which can be introduced to activate the volunteer fire brigade in Korea.