• Title/Summary/Keyword: Server power

Search Result 546, Processing Time 0.026 seconds

A new model and testing verification for evaluating the carbon efficiency of server

  • Liang Guo;Yue Wang;Yixing Zhang;Caihong Zhou;Kexin Xu;Shaopeng Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2682-2700
    • /
    • 2023
  • To cope with the risks of climate change and promote the realization of carbon peaking and carbon neutrality, this paper first comprehensively considers the policy background, technical trends and carbon reduction paths of energy conservation and emission reduction in data center server industry. Second, we propose a computing power carbon efficiency of data center server, and constructs the carbon emission per performance of server (CEPS) model. According to the model, this paper selects the mainstream data center servers for testing. The result shows that with the improvement of server performance, the total carbon emissions are rising. However, the speed of performance improvement is faster than that of carbon emission, hence the relative carbon emission per unit computing power shows a continuous decreasing trend. Moreover, there are some differences between different products, and it is calculated that the carbon emission per unit performance is 20-60KG when the service life of the server is five years.

Efficient Authentication and Management System for PLC-based AMR (전력선통신기반 원격검침시스템을 위한 효율적인 기기인증 및 관리체계)

  • Ju, Seong-Ho;Choi, Moon-Seok;Lim, Yong-Hoon;Choi, Jong-Hyup
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.353-354
    • /
    • 2008
  • Security weakness in PLC network can be made up for by authentication and management scheme of PLC modules introduced in this paper. Each PLC module must pass the authentication procedure to work normally in PLC network as soon as being installed in the spot. Based on this scheme, all PLC devices are registered, certified, and managed automatically in central control center - AMR server, authentication server, NMS server, and DB server.

  • PDF

Hold up Time Extension Technique for high efficiency, high power density server power supply (고효율 고밀도 서버용 전원장치를 위한 Hold up Time 보상 기술)

  • Kim, Young-Do;Cho, Kyu-Min;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • Nowadays, climate change becomes serious problem in all around country. Especially because of global warming problem, every country is suffered from various natural disasters. To prevent these changes, every industry are keep requiring the increase in energy efficiency. Recently, in the regulation of CSCI (climate savers computing initiate), the efficiency of server power supply should meet the demand of 94% at 50% load condition by 2010, which is called platinum level. Hence, server power system has been dramatically developed with the various technique for the high efficiency of it. Among those technique, hold up time extension technique has received wide attention and has been researched for a long time. In this paper, technical trend of hold up time extension circuit will be covered for the high efficiency, high power density server power supply.

A Low Power Asynchronous MSP430 Processor for Ubiquitous Sensor Network (편재형 센서네트워크 노드를 위한 저전력 비동기 MSP430 프로세서)

  • Shin, Chi-Hoon;Shang, Belong;Oh, Myeong-Hoon;Kim, Young-Woo;Kim, Sung-Nam;Yakovlev, Alex;Kim, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.451-453
    • /
    • 2007
  • This paper describes the design of an asynchronous implementation of a sensor network processor. The main purpose of this work is the reduction of power consumption in sensor network node processors and the research presented here tries to explore the suitability of asynchronous circuits for this purpose. The Handshake Solutions toolkit is used to implement an asynchronous version of a sensor processor. The design is made compact, trading area and leakage power savings with dynamic power costs, targeting the typical sparse operating characteristics of sensor node processors. It is then compared with a synchronous version of the same processor. Both versions are then compared with existing commercial processors in terms of power consumption.

  • PDF

A Study on Home Telemetering System using Power Line Communication (전력선 통신을 이용한 가정용 원격 검침 시스템에 관한 연구)

  • Yu Yung-Ho;Shin Il-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.678-684
    • /
    • 2005
  • In this Paper telemetering system for home automation is Proposed and implemented. Proposed and developed systems are composed with a home server and a few clients which send metering data of gas electric power water and home security to home server using power line communication. Management computer located in office of apartment complex collects all kinds of measured home data from each home server with multi drop communication by UDP Protocol A simple ASK method is used for power line communication Collected data from each home can be used for issuing the bill of each house and web service. The experiments were carried out under laboratory environment using various kinds of electric home appliances to ascertain the performance.

An Extensible Smart Home IoT System Based on Low-power Networks (저전력 네트워크 기반의 확장 용이한 스마트 홈 IoT 시스템)

  • Lee, Jun-young;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.133-141
    • /
    • 2018
  • There are increasing interests on smart home systems. However, most of the existing works focus on the functionality itself. In this paper, we propose an extensible smart home system based on low power networking such as CoAP, 6LoWPAN, and Zigbee. The proposed home IoT system consists of Home APP, Home Server, Home Broker, and Power Devices. Each component of the system is connected by the low-power network technologies aforementioned. As the end device, Power Device senses the current consumption of the attached appliance and controls the power to it. Power Device reports the sensing data to Home Server via Home Broker. The Home Broker enhances the scalability of the system. Home Broker extends the service area and the user's services, and it manages the connection of the underlying devices and processes, and transmits data to Home Server from Power Devices. Through the experimental evaluation, we show that the proposed system achieves the design goals such as extensibility and low power networking.

A Research for Agentless Monitoring Application of Energy Consumption Analysis in a Data Center (데이터센터의 효율적인 에너지소비분석을 위한 에이전트리스 모니터링 애플리케이션에 관한 연구)

  • Lee, Yunho;Jung, Hyedong;Lim, Hojung;Kang, Jeonghoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.896-899
    • /
    • 2016
  • Server management and power management are important to operate a data center stably and efficiently. By this paper, we introduce an web based application that is able to monitor and visualize energy consumption, help to energy consumption analysis of a data center due to provide server monitoring information such as temperatures for server, status of each device, power status using server management interfaces and power management modules in data center, also suggest the methods to implement them. This application takes advantage of IPMI which is server management standard interfaces and server management technology in manufacturer's individual way so it can do integrated monitoring for heterogeneous severs, and there is little monitoring load inside of server system because it doesn't need to install agent program for monitoring target system, and it can be used successfully to energy consumption analysis, server management in a data center due to realtime provided energy consumption and monitoring information.

  • PDF

A Flexible Multi-Threshold Based Control of Server Power Mode for Handling Rapidly Changing Loads in an Energy Aware Server Cluster (에너지 절감형 서버 클러스터에서 급변하는 부하 처리를 위한 유연한 다중 임계치 기반의 서버 전원 모드 제어)

  • Ahn, Taejune;Cho, Sungchoul;Kim, Seokkoo;Chun, Kyongho;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.279-292
    • /
    • 2014
  • Energy aware server cluster aims to reduce power consumption at maximum while keeping QoS(quality of service) as much as energy non-aware server cluster. In the existing methods of energy aware server cluster, they calculate the minimum number of active servers needed to handle current user requests and control server power mode in a fixed time interval to make only the needed servers ON. When loads change rapidly, QoS of the existing methods become degraded because they cannot increase the number of active servers so quickly. To solve this QoS problem, we classify load change situations into five types of rapid growth, growth, normal, decline, and rapid decline, and apply five different thresholds respectively in calculating the number of active servers. Also, we use a flexible scheme to adjust the above classification criterion for multi threshold, considering not only load change but also the remaining capacity of servers to handle user requests. We performed experiments with a cluster of 15 servers. A special benchmarking tool called SPECweb was used to generate load patterns with rapid change. Experimental results showed that QoS of the proposed method is improved up to the level of energy non-aware server cluster and power consumption is reduced up to about 50 percent, depending on the load pattern.

Proposal and Design of a Novel SNA Protocol for the Power Control System (전력제어 시스템을 위한 SNA 프로토콜 제안 및 설계)

  • Park, Min-Ji;Lee, Dong-Min;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1122-1128
    • /
    • 2010
  • In this paper, we proposed and designed a novel SNA protocol which operates in the way of a server and a client in the power control system. The proposed SNA protocol includes the information about the mode switching, the saving position of context information, the user trigger, and so forth, which are needed in the power management devices. We consider the application of the SNA protocol to the home network, where message flows between the SNA server and the SNA client. To verify the operation of the SNA protocol, the state transition diagrams of the server in the home gateway and the client in the network device are shown. Hence, we can conclude the SNA can operate without malfuction.

Performance Improvement of an Energy Efficient Cluster Management Based on Autonomous Learning (자율학습기반의 에너지 효율적인 클러스터 관리에서의 성능 개선)

  • Cho, Sungchul;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.11
    • /
    • pp.369-382
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(quality of service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to activate only the minimum number of servers needed to handle current user requests. Previous studies on energy aware server cluster put efforts to reduce power consumption or heat dissipation, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management method to improve not only performance per watt but also QoS of the existing server power mode control method based on autonomous learning. Our proposed method is to adjust server power mode based on a hybrid approach of autonomous learning method with multi level thresholds and power consumption prediction method. Autonomous learning method with multi level thresholds is applied under normal load situation whereas power consumption prediction method is applied under abnormal load situation. The decision on whether current load is normal or abnormal depends on the ratio of the number of current user requests over the average number of user requests during recent past few minutes. Also, a dynamic shutdown method is additionally applied to shorten the time delay to make servers off. We performed experiments with a cluster of 16 servers using three different kinds of load patterns. The multi-threshold based learning method with prediction and dynamic shutdown shows the best result in terms of normalized QoS and performance per watt (valid responses). For banking load pattern, real load pattern, and virtual load pattern, the numbers of good response per watt in the proposed method increase by 1.66%, 2.9% and 3.84%, respectively, whereas QoS in the proposed method increase by 0.45%, 1.33% and 8.82%, respectively, compared to those in the existing autonomous learning method with single level threshold.