• Title/Summary/Keyword: Server power

Search Result 545, Processing Time 0.031 seconds

Technology and Development Trend of High Efficiency and High Power Density Server Power System (고효율 고밀도 서버용 전원장치의 기술 및 개발 동향)

  • Cho, Kyu-Min;Kim, Young-Do;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • As the information oriented society is developing, computer is one of the necessities in our daily life. Especially, the client-server system based on internet is widely used due to the enormous amounts of data and the increasing awareness of the data security. Under these circumstances, the market of the server computer with the $57 billion global market is increasing steadily regardless of economic conditions. However, the domestic server market entirely depends on overseas companies with high technical skills and production power. Therefore, we investigates technology and development trends of the server power system to assist domestic companies in entering the global server power system market in this special paper.

Development of Web-based Power Plant Simulator System (원격 훈련용 발전 시뮬레이터 개발)

  • Byun, Seung-Hyun;Kang, Hae-su;Woo, Joo-Hee;Lee, Jee-Hoon;Kim, Duck-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.277-283
    • /
    • 2021
  • Power plant simulators have been used for operator training, control verification and engineering verification. In general, simulators can be used in the place where they are installed by only single user group at a time. Considering high cost of simulator development, a lot of available scenarios, the diversity of user level and accessibility based on users' work location, development of simulator system that can be used by multiple user groups regardless of location is required in order to enhance utilization of simulators. In this paper, the simulator system that can be used by multiple user group simultaneously without location limitation is proposed. The simulator system is composed of simulator servers, database servers, HMI servers, a web server, web clients. Simulator server consists of control model, process model that are developed for Circulating Fluidized Bed power plant located overseas. A web server manages user accounts, operation procedures, multiple server access between web client group and simulator server group. In other words, a web server makes a user group select a simulator server at a time. The developed simulator system is integrated after implementing process model, control model, HMI, and web server. Web client systems are installed on local site where power plant is located, while simulator servers, HMI servers, database servers, and a web server are located in KEPCO RI. The developed simulator system is verified by steady-state test, malfunction test and so on via remote access.

Dynamic Shutdown of Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 서버 전원 모드 제어에서의 동적 종료)

  • Kim, Hoyeon;Ham, Chihwan;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.7
    • /
    • pp.283-292
    • /
    • 2013
  • In order to ensure high performance, all the servers in an existing server cluster are always On regardless of number of real-time requests. They ensure QoS, but waste server power if some of them are idle. To save energy consumed by servers, the server power mode control was developed by shutdowning a server when a server is not needed. There are two types of server power mode control depending on when a server is actually turned off if the server is selected to be off: static or dynamic. In a static mode, the server power is actually turned off after a fixed time delay from the time of the server selection. In a dynamic mode, server power is actually turned off if all the services served in the server are done. This corresponds to a turn off after a variable time delay. The static mdoe has disadvantages. It takes much time to find an optimal shutdown time manually through repeated experiments. In this paper, we propose a dynamic shutdown method to overcome the disadvantages of static shutdown. The proposed method allows to guarantee user QoS with good power-saving because it automatically approaches an optimal shutdown time. We performed experiments using 30 PCs cluster. Experimental results show that the proposed dynamic shutdown method is almost same as the best static shutdown in terms of power saving, but better than the best static shutdown in terms of QoS.

Efficient Server Virtualization using Grid Service Infrastructure

  • Baek, Sung-Jin;Park, Sun-Mi;Yang, Su-Hyun;Song, Eun-Ha;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.553-562
    • /
    • 2010
  • The core services in cloud computing environment are SaaS (Software as a Service), Paas (Platform as a Service) and IaaS (Infrastructure as a Service). Among these three core services server virtualization belongs to IaaS and is a service technology to reduce the server maintenance expenses. Normally, the primary purpose of sever virtualization is building and maintaining a new well functioning server rather than using several existing servers, and in improving the various system performances. Often times this presents an issue in that there might be a need to increase expenses in order to build a new server. This study intends to use grid service architecture for a form of server virtualization which utilizes the existing servers rather than introducing a new server. More specifically, the proposed system is to enhance system performance and to reduce the corresponding expenses, by adopting a scheduling algorithm among the distributed servers and the constituents for grid computing thereby supporting the server virtualization service. Furthermore, the proposed server virtualization system will minimize power management by adopting the sleep severs, the subsidized servers and the grid infrastructure. The power maintenance expenses for the sleep servers will be lowered by utilizing the ACPI (Advanced Configuration & Power Interface) standards with the purpose of overcoming the limits of server performance.

A Method of Client-Server Assignment for Minimizing the CPU Power Consumption of Servers in a Game Server Cluster (게임 서버 클러스터에서의 서버의 CPU 전력 소모 최소화를 위한 클라이언트-서버 배정 방법)

  • Kim, Sangchul;Lee, Sunghae
    • Journal of Korea Game Society
    • /
    • v.17 no.4
    • /
    • pp.137-148
    • /
    • 2017
  • Since the power consumption of data centers is large and computer serves take a large portion of it, there have been much research on the power saving of servers in various ways recently. Among the units of severs CPU is one of major power consuming units. In this paper, a method of client-server assignment for minimizing the CPU power consumption of servers in a game server cluster is proposed. We model the client-server assignment problem as an optimization problem, and find a solution to the problem using a simulated annealing-based technique. One of major features of our method is to select a proper operating frequency according to the amount of load on a server. The selection of a lower frequency in case of low load will result in reducing power consumption. To our survey, little research on client-server assignment in consideration of power consumption has been carried out.

Parallel Driven Power Supply with Low Cost Hot Swap Controller for Server (저가형 Hot Swap Controller를 가지는 병렬 구동 서버용 전원 장치)

  • Yi, KangHyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.738-744
    • /
    • 2018
  • This paper proposes a low cost hot swap operation circuit of a parallel operation power supply for servers. Hot swap function for server power system is essential in 24 hour operation system such as internet data center, server, factory and etc. Server power supplies used in internet data centers have two or more parallel operations with the hot swap operation. However, the cost of the power supply is high because the controller IC for hot swap operation is very expensive. Therefore, this paper proposes a parallel-operated power supply with a low-cost hot swap controller for servers. The proposed system can operate hot swap function by using discrete devices and reduce the cost by more than 50%. A 1.2kW prototype system is implemented to verify the proposed low cost hot swap controller.

A Dynamic Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 동적 서버 전원 모드 제어)

  • Kim, Ho-Yeon;Ham, Chi-Hwan;Kwak, Hu-Keun;Kwon, Hui-Ung;Kim, Young-Jong;Chung, Kyu-Sik
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.135-144
    • /
    • 2012
  • All the servers in a traditional server cluster environment are kept On. If the request load reaches to the maximum, we exploit its maximum possible performance, otherwise, we exploit only some portion of maximum possible performance so that the efficiency of server power consumption becomes low. We can improve the efficiency of power consumption by controlling power mode of servers according to load situation, that is, by making On only minimum number of servers needed to handle current load while making Off the remaining servers. In the existing power mode control method, they used a static policy to decide server power mode at a fixed time interval so that it cannot adapt well to the dynamically changing load situation. In order to improve the existing method, we propose a dynamic server power control algorithm. In the proposed method, we keep the history of server power consumption and, based on it, predict whether power consumption increases in the near future. Based on this prediction, we dynamically change the time interval to decide server power mode. We performed experiments with a cluster of 30 PCs. Experimental results show that our proposed method keeps the same performance while reducing 29% of power consumption compared to the existing method. In addition, our proposed method allows to increase the average CPU utilization by 66%.

An Improved Estimation Model of Server Power Consumption for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 향상된 서버 전력 소비 추정 모델)

  • Kim, Dong-Jun;Kwak, Hu-Keun;Kwon, Hui-Ung;Kim, Young-Jong;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.139-146
    • /
    • 2012
  • In the server cluster environment, one of the ways saving energy is to control server's power according to traffic conditions. This is to determine the ON/OFF state of servers according to energy usage of data center and each server. To do this, we need a way to estimate each server's energy. In this paper, we use a software-based power consumption estimation model because it is more efficient than the hardware model using power meter in terms of energy and cost. The traditional software-based power consumption estimation model has a drawback in that it doesn't know well the computing status of servers because it uses only the idle status field of CPU. Therefore it doesn't estimate consumption power effectively. In this paper, we present a CPU field based power consumption estimation model to estimate more accurate than the two traditional models (CPU/Disk/Memory utilization based power consumption estimation model and CPU idle utilization based power consumption estimation model) by using the various status fields of CPU to get the CPU status of servers and the overall status of system. We performed experiments using 2 PCs and compared the power consumption estimated by the power consumption model (software) with that measured by the power meter (hardware). The experimental results show that the traditional model has about 8-15% average error rate but our proposed model has about 2% average error rate.

Power and Heat Load of IT Equipment Projections for New Data Center's HVAC System Design (데이터센터의 공조시스템 계획을 위한 IT장비의 전력 및 발열량 예측에 대한 연구)

  • Cho, Jin-Kyun;Shin, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • The cooling of data centers has emerged as a significant challenge as the density of IT equipment increased. With the rapid increasing of heat load and cooling system, predictions for electronics power trends have been closely watched. A data center power density projection is needed so that IT organizations can develop data centers with adequate cooling for reasonable lifetimes. This paper will discuss the need for something more than processor and equipment power trend projections which have overestimated the required infrastructure for customers. This projection will use data from a survey of actual enterprise data centers and the ASHRAE projections to formulate a data center server heat load trend projection.

A Study on the Development of MMS Server Simulator with IEC61850 (IEC61850을 이용한 MMS Server Simulator 개발)

  • Kim, M.H.;Choi, Y.J.;Lee, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.339-341
    • /
    • 2008
  • 본 논문은 변전소자동화(Substation Automation : SA)의 국제표준화 동향에 맞추어, IEC61850이라는 국제표준 Protocol을 탑재한 여러 Device의 통신 환경을 구축하기 위해서 개발된 MMS Server Simulator 개발에 관한 소개이다. 본 연구를 통해 개발된 MMS Server Simulator는 MMS(Manufacturing Message Specification) Server의 기능과 함께 Report Control Block, GOOSE (Generic Object Oriented Substation Event) Publisher 등의 기능을 가지고 있다.

  • PDF