• 제목/요약/키워드: Serratia plymuthica A21-4

검색결과 8건 처리시간 0.02초

근권토양의 환경이 고추역병 억제 미생물 Serratia plymuthica A21-4의 고추뿌리와 근권 토양 정착에 미치는 영향 (The Effect of the Colonization of Serratia plymuthica A21-4 in Rhizosphere Soil and Root of Pepper in Different Soil Environment)

  • 조박;신순선;문재예;송상;박창석
    • 식물병연구
    • /
    • 제15권2호
    • /
    • pp.101-105
    • /
    • 2009
  • Serratia plymuthica A21-4는 양파(Allitum fistulosum L.) 근권에서 분리된 고추 역병 생물적 방제 미생물이다. 토양 환경이 S. plymuthica A2l-4 근권정착에 미치는 영향을 알아본 결과 사질이 많이 포함되어 공극이 많은토양에 3% 중량(w/w)의 부숙된 옥수수 줄기를 첨가하고 토양 수분함양이 40% 정도, 토양온도가 $20^{\circ}C$, 토양 pH가 중성이거나 약산성 토양이 S. plymuthica A2l-4의 근권정착에 유리하였다. 그리고 토착미생물이 있는 것이 살균한 토양에서 보다 S. plymuthica A21-4의 근권정착에 유리하였다.

Characterization of Antibiotic Substance Produced by Serratia plymuthica A21-4 and the Biological Control Activity against Pepper Phytophthora Blight

  • Shen, Shun-Shan;Piao, Feng-Zhi;Lee, Byong-Won;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.180-186
    • /
    • 2007
  • The biocontrol agent, Serratia plymuthica A21-4, has been developed for controlling pepper Phytophthora blight. Serratia plymuthica A21-4 strongly inhibits the mycelial growth, zoospore formation, and cyst germination of Phytophthora capsici in vitro. The application of a cell suspension of strain A21-4 to pepper plants in pot experiments and in greenhouse successfully controlled the disease. The bacteria produced a potent antifungal substance which was a key factor in the suppression of Phytophthora capsici. The most active chemical com-pound was isolated and purified by antifungal activity-guided fractionation. The chemical structure was identified as a chlorinated macrolide $(C_{23}H_{31}O_8Cl)$ by spectroscopic (UV, IR, MS, and NMR) data, and was named macrocyclic lactone A21-4. The active compound significantly inhibited the formation of zoosporangia and zoospore and germination of cyst of P. capsici at concentrations lower than $0.0625{\mu}g/ml$. The effective concentrations of the macrocyclic lactone A21-4 for $ED_{50}$ of mycelial growth inhibition were $0.25{\mu}g/ml,\;0.25{\mu}g/ml,\;0.30{\mu}g/ml \;and\;0.75{\mu}g/ml$ against P. capsici, Pythium ultimum, Sclerotinia sclerotiorum and Botrytis cinerea, respectively.

Serratia plymuthica Strain A2l-4: A Potential Biocontrol Agent Against Phytophthora Blight of Pepper

  • Shen, Shun-Shan;Kim, Jin-Woo;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.138-141
    • /
    • 2002
  • A promising biocontrol agent, A2l-4, against Phytophthora blight of pepper was selected from 351 bacterial isolates collected from rhizosphere soils and roots of onion (Allium fistulosum L.). The isolate A21-4 was identified as Serratia plymuthica based on its 16S rRNA sequence and key characteristics as compared with that of an authentic culture of S. plymuthica (ATCC No. 6109D01). The isolate readily colonized on roots of various crops including pepper when inoculated on seed and not. Strain A2l-4 showed narrow spectrum of antibiotic activity, as revealed in its strong inhibitory activity to the genera Pythium and Phytophthora, but not to Fuasrium and Rhizoctonia. In pot experiments, none of the pepper seedlings treated with A2l-4 were infected by Phytophthora capsici, while 86% of the control plants were killed by the pathogen.

Root Colonizing and Biocontrol Competency of Serratia plymuthica A21-4 against Phytophthora Blight of Pepper

  • Shen, Shun-Shan;Choi, Ok-Hee;Park, Sin-Hyo;Kim, Chang-Guk;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.64-67
    • /
    • 2005
  • The biocontrol agent Serratia plymuthica A21-4 readily colonized on the root of pepper plant and the bacterium moves to newly emerging roots continuously. The colonization of A21-4 on the pepper root was influenced by the presence ofPhytophthora capsici in the soil. When P. capsici was introduced in advance, the population density of A21-4 on the root of pepper plant was sustained more than $10^6$ cfu/g root until 3 weeks after transplanting. On the other hand, in the absence of P. capsici, the population density of A21-4 was reduced continuously and less than $10^5$ cfu/g root at 21 days after transplanting. S. plymuthica A21-4 inhibited successfully the P. capsici population in pepper root and rhizosphere soil. In the rhizosphere soil, the population density of P. capsici was not increased more than original inoculum density when A21-4 was treated, but it increased rapidly in non-treated control. Similarly, the population density of P. capsici sharply increased in the non-treated control, however the population of P. capsici in A21-4 treated plant was not increased in pepper roots. The incidence of Phytophthora blight on pepper treated with A21-4 was 12.6%, while that of non-treated pepper was 74.5% in GSNU experimental farm experiment. And in farmer's vinyl house experiment, the incidence of the disease treated with the fungicide was 27.3%, but treatment of A21-4 resulted in only 4.7% of the disease incidence, showing above 80% disease control efficacy.

Effect of Hydrogel on Survial of Serratia plymuthica A21-4 in Soils and Plant Disease Suppression

  • Shen, Shun-Shan;Kim, Won-Il;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제22권4호
    • /
    • pp.364-368
    • /
    • 2006
  • Survival of biocontrol agents and their effective colonization of rhizhosphere are the essential components for successful disease suppression. The effects of hydrogel supplement on bacterial survival and disease control were evaluated in pot and in the field. Addition of 2% hydrogel material to potting soil resulted in significant enhancement of colonization of biocontrol agent Serratia plymuthica A21-4 both in soil and rhizosphere of pepper plants. Rhizosphere colonization of S. plymuthica A21-4 retrieved from 40 days old pepper seedlings indicated 100 times higher bacterial population in hydrogel treated soil than in ordinary pot soil. The pepper plants sown in hydrogelated potting soil showed higher seed germination rate and the better growth of pepper plant than those in ordinary commercial pot soil. Although the suppression of Phytophthora capsid density in the potting soil by treatment of biocontrol agent A21-4 was not significantly different between in hydrogelated soil and ordinary potting soil, the suppression of Phytophthora blight between two treatments was significantly different. A21-4 treatment in hydrogelated potting soil was completely disease-free while same treatment in ordinary potting soil revealed 36% disease incidence. Our field study under natural disease occurrence also showed significantly less disease incidence(12.3%) in the A21-4 treatment in the hydrogelated soil compared to other treatments. Yield promotion of pepper by the A21-4 treatment in the hydrogelated potting soil was also recognized. Our results indicated that hydrogel amendment with biocontrol agent in pot soil would be a good alternative to protect pepper seedlings and increase plant yield.

Enhancement of Biocontrol Efficacy of Serratia plymuthica A21-4 Against Phytophthora Blight of Pepper by Improvement of Inoculation Buffer Solution

  • Shen, Shun-Shan;Park, Sin-Hyo;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.68-72
    • /
    • 2005
  • The production of antibiotic substances by Serratia plymuthica A21-4 was greatly enhanced by modifying components of a growth medium. When the minimal medium containing $K_2HPO_4$ 0.7%, $KH_2PO_4$ 0.2%, $(NH_4)_2SO_4$ 0.1%, $MgSO_4$ 0.01% was used as basal medium, the best carbon source for antibiotic production was glycerol and the most favorable nitrogen source was ammonium sulfate. The modified medium for antibiotic production also increased colonization ability of A21-4 on pepper root and in the rhizosphere soil. When the cells of A21-4 were suspended in modified medium, the population density of A21-4 on pepper root was 10-100 times higher than that suspended in 0.1 M $MgSO_4$. The population density of A21-4 on root did not decrease under $10^6$ cfu/groot up to 21 days after treatment although the inoculum of A21-4 was reduced to $10^7$ cell/ml. Similar tendency was also observed in the rhizosphere soil. Consequently, Phytophthora blight of pepper was successfully controlled by A21-4 with $10^7$ cell/ml suspended in the modified buffer solution instead of $10^9$ cfu/ml suspended in 0.1 M $MgSO_4$.

Enhancement of Biocontrol Activity of Serratia plymuthica A21 -4 Toward Phytophthora Blight of Pepper by Amendment of Nutritional Condition

  • Shen, Shun-Shan;Kim, Chang-Guk;Park, Chang-Seuk
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.96.1-96
    • /
    • 2003
  • Serratia plymuthim A21-4 strongly inhibits the mycelial growth, zoospore formation, and cystospore germination of Phytophthor spp and Pythium species. The bacterial isolate produced antifungal substance and chitinase. The bacteria also enhanced to plant growth remarkably in low nutritional condition. The application of cell suspension of A21-4 to pepper seedlings in greenhouse experiments and soil drenching in farmer's field was proved successfully to control the phythophthora blight of pepper. For the effective control, however, relatively high density of cell number(10$\^$9/cfu/$m\ell$) is required. Density effect was similar in plant growth promoting activity of A21-4. Though this investigation we improved the problem with changes of culture condition of bacteria and some nutritional amendment.

  • PDF

기능성 할로겐화 페닐피롤 (Development of Functional Halogenated Phenylpyrrole Derivatives)

  • 정민희;공희정;김영옥;이진호
    • 생명과학회지
    • /
    • 제33권10호
    • /
    • pp.842-850
    • /
    • 2023
  • 피롤니트린, 피롤로마이신, 피오루테오린 등은 미생물 유래의 다양한 항균활성을 갖는 기능성 할로겐화 페닐피롤 유도체들이다. 그 중에서 피롤니트린은 Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica 등에서 L-트립토판으로부터 4단계 반응을 거쳐 만들어내는 이차대사산물이다. 현재 표재성 피부 사상진균 감염의 치료용으로 사용되며, 토양유래 및 엽면 진균감염에 높은 길항작용을 하며, 인체에 무해하여 산업적 응용가치가 높다. 한편 피롤니트린은 빛에 의해 잘 분해되기 때문에 야외에서 광범위하게 사용하는데 어려움이 있다. 그 대안으로 구조적으로 유사하고 광 안정성이 우수한 합성으로 생산되는 비침습성 표면 살균제인 플루디옥소닐이 개발되어, 주로 식물의 종자 및 엽면 처리용으로 광범위하게 사용되고 있다. 그러나, 수생생물에 높은 독성을 야기하며, 인간 세포주에서 잠재적인 내분비 교란물질로 작용할 수 있는 위험요인이 있어 각국에서 잔류허용 기준량을 설정하여 관리하고 있다. 한편, 천연 피롤로마이신, 피오루테오린과 같은 화합물이 미생물에서 분리, 확인되었으며, 각각. 그람양성균에 대한 항생/항생물막 활성, 식물 병원 난균류 Pythium ultimum에 높은 항균활성을 갖는다. 본 총설은 여러 기능성 할로겐화 페닐피롤 유도체 중 세균 유래의 피롤니트린의 생합성에 관한 특징과 생산, 합성 플루디옥소닐의 특징, 그 외 천연 페닐피롤 유도체들의 특징등을 요약하였다. 우리는 다양한 천연 HPD의 미생물에 의한 생산과 화학합성법에 의한 다양한 합성 HPD의 개발을 통해 인간과 환경에서 높은 치료 효능과 안전성을 제공하는 새로운 HPD의 개발을 기대한다.