• Title/Summary/Keyword: Serrated Sheet Forming Process

Search Result 2, Processing Time 0.014 seconds

FE Analysis on the Serrated Forming Process using Multi-action Pressing Die (복동금형을 이용한 돌기성형공정에 관한 유한요소해석)

  • Jang, D.H.;Ham, K.C.;Ko, B.D.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.429-435
    • /
    • 2008
  • In this paper, the serrated forming process is analyzed with finite element method. The seal should secure the overlapping portions of ligature, which has teeth for ligature to prevent from slipping each other after clamping. In the simulation, rigid-plastic finite element model has been applied to the serration forming process. Serration or teeth forming characteristics has been analyzed numerically in terms of teeth geometry based on different forming conditions. Analyses are focused to find the influence of different die movements and geometries on the tooth geometry, which is crucial for securing overlapping portions of ligature. Two major process variables are selected, which are the face angle and entry angle of punch, respectively. Extensive investigation has been performed to reveal the influences of different entry and face angles on the geometry of teeth formation in the simulation. Three different face angles of punch have been selected to apply to each simulation of serrated sheet forming process with every case of punch entry angles. Furthermore, tooth geometries predicted from simulation have been applied to the indention process for comparing proper tooth geometries to secure the sealing.

Development of Multi-Action Die for the Forming Process of Serrated Sheets (판재의 돌기성형을 위한 공정 개발에 관한 연구)

  • Koo, H.S.;Min, K.H.;Seo, J.M.;Noh, J.H.;Vishara, R.J.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • This paper is concerned with the development of multi-action die or multiple sliding die for the forming process of serrated sheets. Serrated sheets is used as a toothed or serrated seal for securing together overlapping portions of steel or plastic strapping ligature and have been produced conventionally in several methods such as rolling and indentation. Recently, longitudinally oriented thermoplastic materials have been widely used in the strapping industry, while such materials are quite slippery. Provided projections on a seal biting into the strap should overcome the slipperiness and also the tooth configuration must be closely controlled to avoid too much transverse penetration of the strap which could result in the shredding of the strap when it is placed under tension. The seal includes a central portion with a plurality of teeth which bite into one strap portion and a pair of reversely bent legs with a plurality of teeth which bite into the other strap portion. Forming processes applicable for serrated sheets have reviewed in qualitative sense to find possibility in terms of applicability of one of existing processes to the serrated sheet forming process. Existing seal products have been analyzed with enlarged picture of strap contacting surface of the seal by microscope. Based on the analyses of the existing forming processes and seal products, a new forming process is proposed for serrated sheets. The proposed process requires a multislide die which enables inclined indentation or cut-in into the seal material as well as scratching processes sequentially in a single action press.