• 제목/요약/키워드: Serotonergic receptor

검색결과 52건 처리시간 0.024초

Microinjection of Glutamate into the Amygdala Modulates Nociceptive and Cardiovascular Response in Freely Moving Rats

  • Ahn, Dong-Kuk;Kim, Yun-Sook;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.687-693
    • /
    • 1998
  • This study was performed to examine the mean arterial pressure and nociceptive jaw opening reflex after microinjection of glutamate into the amygdala in freely moving rats, and to investigate the mechanisms of antinociceptive action of amygdala. Animals were anesthetized with pentobarbital sodium (40 mg/kg, ip). A stainless steel guide cannula (26 gauge) was implanted in the amygdala and lateral ventricle. Stimulating and recording electrodes were implanted into each of the incisor pulp and anterior digastric muscle. Electrodes were led subcutaneously to the miniature cranial connector sealed on the top of the skull with acrylic resin. After 48 hours of recovery from surgery, mean arterial pressure and digastric electromyogram (dEMG) were monitored in freely moving rats. Electrical shocks (200 ${\mu}sec$ duration, $0.5{\sim}2$ mA intensity) were delivered at 0.5 Hz to the dental pulp every 2 minutes. After injection of 0.35 M glutamate into the amygdala, mean arterial pressure was increased by $8{\pm}2$ mmHg and dEMG was suppressed to $71{\pm}5%$ of the control. Injection of 0.7 M glutamate elevated mean arterial pressure by $25{\pm}5$ mmHg and suppressed dEMG to $20{\pm}7%$ of the control. The suppression of dEMG were maintained for 30 minutes. Naloxone, an opioid receptor antagonist, inhibited the suppression of dEMG elicited by amygdaloid injection of glutamate from $28{\pm}4\;to\;68{\pm}5%$ of the control. Methysergide, a serotonin receptor antagonist, also inhibited the suppression of dEMG from $33{\pm}5\;to\;79{\pm}4%$ of the control. However, phentolamine, an ${\alpha}-adrenergic$ receptor antagonist, did not affect the suppression of dEMG. These results suggest that the amygdala can modulate both cardiovascular and nociceptive responses and that the antinociception of amygdala seems to be attributed to an augmentation of descending inhibitory influences on nociceptive pathways via serotonergic and opioid pathways.

  • PDF

인삼의 항마약 효과 (Antinarcotic Effect of Panax ginseng)

  • Hack Seang Kim;Ki
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.178-186
    • /
    • 1990
  • The analgesic effect of morphine was antagonized and the development of tolerance was suppressed by the modification of the neurologic function in the animals treated with ginseng saponins The activation of the spinal descending inhibitory systems as well as the supraspinal structures by the administration of morphine was inhibited in the animals treated with ginseng saponine intracerebrally or intrathecally. The development of morphine tolerance and dependence, and the abrupt expression of naloxone inducted abstinence syndrom were also inhibited by ginsenoside Rb1, Rb2, Rg1 and Re. These results suggest that ginsenoside Rbl, Hbs, Rgl and Re are the bioactive components of panax ginseng on the inhibition of the development of morphine tolerance and dependence, and the inhibition of abrupt abstinence sindrome. In addition, further research on the minor components of Pnnnxkinsenl should be investigated. A single or daily treatment with ginseng saponins did not induce any appreciable changes in the brain in level of monoamines at the variolls time intervals and at the various day intervals, respectively. The inhibitory or facilitated effects of ginseng saponins on electrically evoked contractions in guinea pig ileum ($\mu$-receptor) and mouse vats deferens ($\delta$-receptor) were not mediated through opioid receptors. The antagonism of a $\chi$ receptor agonist, U-50, 488H was also not mediated through opioid receptors in the animals treated with ginseng saponins, but mediated through serotonergic mechanisms. Ginseng saponins inhibited morphine 6-dehydrogenase which catalyzed the production of morphinone from morphine, and increased hepatic glutathione contents for the detoxication of morphinone. This result suggests that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and dependence.

  • PDF

쥐의 신경병증성 통증 모델에서 트라마돌의 진통효과 (Antinociceptive Effects of Tramadol on the Neuropathic Pain in Rats)

  • 송경화;김현정;염광원
    • The Korean Journal of Pain
    • /
    • 제14권2호
    • /
    • pp.150-155
    • /
    • 2001
  • Background: Tramadol is known to be a weak opioid. However, it has also been shown that tramadol is an effective norepinephrine and serotonin uptake blocker, which may be effective in the treatment of neuropathic pain. The present study was undertaken in order to assess the antinociceptive action of tramadol and to investigate possible antinociceptive mechanisms by using antagonists in an animal neuropathic pain models in rats. Methods: Rats were prepared with tight ligation at the left 5 and 6th lumbar spinal nerves (Kim and Chung's neuropathic pain model). The antinociceptive effects of tramadol (10, 20, and 50 mg/kg i.p.) in rats with neuropathic pain were assessed. Additionally, following coadministration of antagonists such as naloxone (1 mg/kg i.p.), yohimbine (1 mg/kg i.p.) and ritanserin (1 mg/kg i.p.) with 50 mg/kg of tramadol, the responses to mechanical and thermal stimuli were measured over a two-hour period. Results: Tramadol displayed potent antinociceptive effects in a dose-dependent manner on rats with neuropathic pain (P < 0.05). The effects of tramadol were inhibited by coadministered naloxone and yohimbine in rats with mechanical and thermal allodynia, respectively (P < 0.05). However, there were no significant changes in the pain behaviors in the case of ritanserin. Conclusions: Tramadol showed significant antinociceptive effects in rats with regards to neuropathic pain against both mechanical and thermal allodynia. The antinociceptive effect on the mechanical stimuli is medicated via an opioid receptor. However, it appears that the antinociceptive effects on thermal allodynia are mediated via a noradrenalin receptor vice a serotonergic receptor.

  • PDF

Systemically administered neurotensin receptor agonist produces antinociception through activation of spinally projecting serotonergic neurons in the rostral ventromedial medulla

  • Li, Yaqun;Kang, Dong Ho;Kim, Woong Mo;Lee, Hyung Gon;Kim, Seung Hoon;You, Hyun Eung;Choi, Jeong Il;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Supraspinal delivery of neurotensin (NTS), which may contribute to the effect of a systemically administered agonist, has been reported to be either pronociceptive or antinociceptive. Here, we evaluated the effects of systemically administered NTSR1 agonist in a rat model of neuropathic pain and elucidated the underlying supraspinal mechanism. Methods: Neuropathic pain was induced by L5 and L6 spinal nerve ligation in male Sprague-Dawley rats. The effects of intraperitoneally administered NTSR1 agonist PD 149163 was assessed using von Frey filaments. To examine the role of 5-HT neurotransmission, a serotonin (5-HT) receptor antagonist dihydroergocristine was pretreated intrathecally, and spinal microdialysis studies were performed to measure the change in extracellular level of 5-HT in response to PD 149163 administration. To investigate the supraspinal mechanism, NTSR1 antagonist 48692 was microinjected into the rostral ventromedial medulla (RVM) prior to systemic PD 149163. Additionally, the effect of intrathecal DHE on intra-RVM PD 149163 was assessed. Results: Intraperitoneally administered PD 149163 exhibited a dose-dependent attenuation of mechanical allodynia. This effect was partially reversed by intrathecal pretreatment with dihydroergocristine and was accompanied by an increased extracellular level of 5-HT in the spinal cord. The PD 149163-produced antinociception was also blocked by intra-RVM SB 48692. Direct injection of PD 149163 into the RVM mimicked the maximum effect of the same drug delivered intraperitoneally, which was reversed by intrathecal dihydroergocristine. Conclusions: These observations indicate that systemically administered NTSR1 agonist produces antinociception through the NTSR1 in the RVM, activating descending serotonergic projection to release 5-HT into the spinal dorsal horn.

생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구 (Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine)

  • 김병주
    • 생명과학회지
    • /
    • 제31권7호
    • /
    • pp.662-670
    • /
    • 2021
  • 카할세포는 위장관 근육의 pacemaker 세포이다. 이번 연구는 생쥐 소장에서 얻은 카할세포를 배양하여 노르아드레날린성 및 세로토닌성 항우울제인 미르타자핀의 효과를 조사했다. 전기생리학적인 방법을 이용하여 카할세포의 pacemaker potential의 변화를 측정하였다. 미르타자핀은 농도 의존적 방식으로 카할세포 탈분극을 일으켰다. Y25130 (5-HT3 수용체 길항제), RS39604 (5-HT4 수용체 길항제) 또는 SB269970 (5-HT7 수용체 길항제)은 미르타자핀에 의한 카할세포 탈분극에 영향을 미치지 않았다. 또한, 무스카린성 M2 수용체 길항제인 메톡 트라민은 미르타자핀에 의한 카할세포의 탈분극에 영향을 미치지 않은 반면, 무스카린성 M3 수용체 길항제인 4-DAMP는 카할세포의 탈분극을 억제하였다. GDP-β-S를 피펫을 통해 카할세포내로 넣었을 때, 미르타자핀에 카할세포 탈분극이 억제되었다. 외부에 칼슘이 없는 용액 또는 소포체의 Ca2+-ATPase 억제제인 thapsigargin이 있는 경우 미르타자핀에 의한 카할세포 탈분극이 나타났다. 또한, protein kinase C (PKC) 억제제인 칼포스틴 C 또는 chelerythrine은 미르타자핀에 의한 탈분극을 억제했습니다. 이러한 결과는 미르 타자핀이 카할세포에서 G 단백질 및 PKC 경로에 의한 무스카린성 M3 수용체 활성화를 통해 탈분극을 조절 함을 알 수 있다. 따라서 미르타자핀이 카할세포를 통해 위장관 운동성을 조절할 수 있음을 시사한다.

Clozapine이 불응성 정신분열증 환자의 혈장 단가아민에 미치는 영향 (Effects of Clozapine of Plasma Monoamine Metabolites in Refractory Schizophrenia)

  • 이민수;김승현;유승호
    • 생물정신의학
    • /
    • 제3권2호
    • /
    • pp.262-268
    • /
    • 1996
  • It has been known that clozapine is more selective mesolimbic dopamin $D_2$ receptor antagonist and related to 5-HT receptor. In this study, we wxamined the plasma homovanillic acid(HVA), serotonin(5-HT), and 5-hydroxyindoleacetic acid(5-HIM) levels in refractory schizophrenics during clozapine treatment. And we assessed the effects of clozapine on these plasma monoamine metabolites and their association with psychopathology and treatment response. Eight refractory schizophrenic patients(DSM-IV) have entered the study for 3 months during clozapine treatment. Patients were admitted to the inpatient sevice and withdrawn from all neuroleptics for 7-14 days but exceptionally occasional doses of lorazepam was given if needed for behavioral control. The dose of clozapine was titrated as tolerated to 800mg/day. The plasma HVA. 5-HIM and 5-HT levels were measured before treatment and following 2nd week, 4th week, 8th week, and 12th during treatment. Psychopathology was assessed with Brief Psychiatric Rating Scale (BPRS) and Positive and Negative Synrome Scale(PANSS) before and during clozapine treatment. During clozapine treatment, no statistically significant changes were found in plasma HVA, 5-HIM, 5-HT levels, and HVA/5-HIM ratio between baseline and following 2nd week, 4th week, 8th week, 12th week. However, the change in plasma 5-HIAA/5-HT ratio from baseline to 4th week was statistically significant. Generally, changes of plasma HVA, 5-HIAA, 5-HT levels and HVA/5-HIAA ratio were not associated with psychopathology but 5-HIAA was associated with in positive symptoms and general psychopathology of PANSS. These results suggest that clozapine has been found to have relatively weak dopaminergic blokade and stronger serotonergic antagonism.

  • PDF

Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex

  • Park, Sung-Won;Jang, Hyun-Jong;Cho, Kwang-Hyun;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.65-70
    • /
    • 2012
  • Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-weekold rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-$HT_2$ receptors, but not by the activation of either 5-$HT_{1A}$ or 5-$HT_3$ receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

Capsaicin 약침(藥鍼)이 흰쥐의 급성(急性) 염좌(捻挫)에 마치는 효과 (Capsaicin Pharmacopuncture Modulates Ankle Sprain Induced Pain in Rats)

  • 박상연;최윤영;전인숙;구성태;김경식;손인철;김재효
    • Korean Journal of Acupuncture
    • /
    • 제23권2호
    • /
    • pp.113-123
    • /
    • 2006
  • Objectives: Pharmacopuncture which is a combination of acupuncture and herbal medicine helps to prevent and treat the diseases and symptoms including various pains. However, little was known about the therapeutic effects and its mechanisms on acute pain, although pharmacopuncture has been used frequently in acupuncture clinics. Acupuncture is known for producing analgesia for persistent ankle sprain pain in human. Furthermore, it also produces analgesia in a rat model of ankle sprain pain. Methods: To illuminate the underlying mechanisms of capsaicin pharmacopuncture-induced analgesia, weight bearing force (WBF) was observed on the acute ankle sprained rat model. Ankle sprain was induced in the rat by manually hyper-extending ligaments of the right ankle. Capsaicin pharmacopuncture was applied to SI6 (Yanglo) on the left forelimb (contralateral to the sprained ankle). Results: In behavioral test, capsaicin pharmacopuncture produced marked analgesic effects on acute ankle sprained animals as measured by WBF of the affected limb similar to manual acupuncture. Capsaicin pharmacopuncture was also suppressed by serotonin (5-HT) receptor antagonist methysergide (2 mg/kg, Lp.), but not by opioids receptor antagonist naltrexone (10 mg/kg, Lp.) and alpha adrenoceptor antagonist phentolamine (5 mg/kg, Lp.). Conclusion: The data suggest that capsaicin pharmacopuncture-induced analgesia is accomplished by activating the descending serotonergic inhibitory systems.

  • PDF

Developmental Disability Animal Model Based on Neonatal Lipopolysaccharide with Altered 5-HT Function

  • Kim, Jae-Goo;Kim, Min-Soo;Lee, Se-Oul;Kim, Gun-Tae;Lee, Jong-Doo;Kim, Dong-Goo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권3호
    • /
    • pp.113-119
    • /
    • 2007
  • Developmental disability shows life-long behavioral abnormality with no significant physical malformation. This study was undertaken to develop an animal model for developmental disability by using two-factor approach. Lipopolysaccharide (LPS), a bacterial toxin, and NAN-190, a $5-HT_{1A}$ receptor antagonist, were administered to Sprague-Dawley rats on postnatal day (PND) 5 to induce inflammation and an altered 5-HT system, respectively. Long-term alteration of behavior occurred in the drug-treated groups. The LPS-treated group showed impaired motor coordination in the Rota-rod test. The LPS- treated or both LPS and NAN-190-treated groups showed impaired fore-paw muscle power in the wire maneuver test. These groups also showed decreased white matter volume and increased serotonergic fibers. The LPS and NAN-190-treated group also exhibited neurologic deficit in the placing reaction test and impaired equilibrium function in the tilt table test. The results showed that a variety of altered behaviors can be generated by two factor model, and suggested that combination of important etiologic factors and possible underlying defects is a promising strategy of establishing an animal model for developmental disabilities.