• Title/Summary/Keyword: Serine

Search Result 1,381, Processing Time 0.025 seconds

Producyion of Threonine Using Methanol Dehydrogenase and Serine Hydroxyltransferase in a New Methylotrophic Bacterium KJ29 (New Methylotrophic Bacterium KJ29의 Methanol Dehydrogenase와 Serine Hydroxymethyltransferase를 이용한 Threonine의 생산에 관한 연구)

  • 김경자
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.577-581
    • /
    • 1993
  • The amino acid threonine was produced from glycine and ethanol in a reaction mixture using cell free extract of the methylotrophic bacterium isolated from soil and identified as mellthylo-bacterium sp. KJ29. Although the isolate could grow on carbon source other than methanol, only the cell free extract from the cells grown on methanol produced threonine. Methanol dehydrogenase (MDH) activity was present only in the cells grown on methanol when compared to the cells grown on heterotrophic substrates.

  • PDF

Effect of Amino Acid Substitutions of Escherichia Coli $\gamma$-Glutamylcysteine Synthetase (Escherichia coli $\gamma$-Glutamylcysteine Synthetase의 아미노산 치환 효과)

  • 남용석;김중수;곽준혁;박영인;이세영
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.278-283
    • /
    • 1991
  • Two amino acid residues ($Ala^{494}$ and $Ser^{495}$ of E. coli .gamma.-glutamylcysteine synthetase have been investigated whether they are the site of feedback inhibition by site specific mutagenesis. Single substitution of $serine^{495}$ (S495F), and double substitutions of alanine$^{494}$ and $serine^{495}$ (A494G-S495F) resulted in the inactivation of the .gamma.-glutamylcysteine synthetase activity. Substitution of $alanine^{494}$ with $glycine^{494}$ resulted in a higher level of feedback inhibition. These results suggest that $serine^{495}$ in .gamma.-glutamylcysteine synthetase is required for its catalytic acitvity and $alanine^{494}$ is presumably related to the feeback inhibition site.

  • PDF

Purification and characterization of An Extracellular Serine Protease from Bacillus sp. strain KUN-17 (Bacillus sp. KUN-17 균주가 생산하는 균체외 Serine Protease의 정제 및 특성)

  • 황세영
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.53-59
    • /
    • 1995
  • A protease isolated and purified 51 fold from the culture filtrate of a soil bacterium, Bacillus sp. KUN-17, which was appeared to be a monomeric protein with molecular weight of 38, 000 daltons, was suggested to be involved in the serine (-alkaline) protease (E.C 3.4.21.14) since its activity was selectively inhibited by phenylmethylsulfonyl fluoride (PMSF) and required 40$\circ$C and pH 10.5 for optimal condition. The half-life of the enzyme activity was 1 hr at 55$\circ$C, and the activity was maintained even under high concentrations of SDS or urea. The enzyme was indicated to perform random proteolysis from the fact that most of the chromogenic substrates employed were hydrolyzed by the enzyme. The affinity of the enzyme for natural proteins was approximately 10-times higher than ester compounds, and both substrates showed mutual inhibitory effect competitively for the enzyme activity.

  • PDF

Multicatalytic Alkaline Serine Pretense from the Psychrotrophic Bacillus amyloliquefaciens S94

  • Son, Eui-Sun;Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.58-62
    • /
    • 2003
  • An extracellular pretense of Bacillus amyloliquefaciens S94 was purified to apparent homogeneity. The enzyme activity was strongly inhibited by general inhibitor for serine protease, PMSF, suggesting that the enzyme is a serine pretense. The purified enzyme activity was inhibited by leucine peptidase inhibitor, bestatin, suggesting that the enzyme is a leucine endopeptidase. The maximum proteolytic activity against different protein substrates occurred at pH 10, 45$^{\circ}C$ (protein substrate) and pH 8, 45$^{\circ}C$ (synthetic substrate). The purified enzyme was specific in that it readily hydrolyBed substrates with Leu or Lys residues at P$_1$ site. The pretense had characteristics of a cold-adapted protein, which was more active for the hydrolysis of synthetic substrate in the range of 15$^{\circ}C$ to 45$^{\circ}C$, specially at low temperature.

Serine Proteases of Parasitic Helminths

  • Yang, Yong;Wen, Yun jun;Cai, Ya Nan;Vallee, Isabelle;Boireau, Pascal;Liu, Ming Yuan;Cheng, Shi Peng
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed.

Studies on the Effect of the Phosphorylated IgE-Dependent Histamine-Releasing Factor on Na,K-ATPase Activity in HeLa Cell (HeLa세포에서 IgE-dependent Histamine-releasing Factor의 인산화가 Na,K-ATPase의 활성에 미치는 영향)

  • Kim Jung-A;Ha Hunjoo;Lee Kyunglim
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.184-188
    • /
    • 2005
  • IgE-dependent histamine-releasing factor (HRF) is found extracellularly to regulate the degranulation process of histamine in mast cells and basophils and known to play a predominant role in the pathogenesis of chronic allergic disease. HRF has been also identified in the intracellular region of the cell. Previously, we reported that HRF interacts with the 3rd cytoplasmic domain of the alpha subunit of Na,K ATPase and inhibits Na,K-ATPase activity. The predicated phosphorylation site in HRF by PKC was mapped to one serine residues (S98) by the computer analysis. In this study, we identified that S98 residue of HRF was phosphorylated using anti-HRFpS98 antibody which specifically recognizes the phosphorylated serine residue of HRF and HRFS98A mutant construct. We also performed $^{86}Rb^{+}-uptake$ assay to understand the role of HRF wild-type and HRFS98A mutants on the regulation of Na,K-ATPase activity. Dephosphorylation of HRF at serine 98 residue recovers slightly the inhibitory function of HRF, suggesting that phosphorylated HRF at serine 98 may not suppress the Na,K-hfpase activity.

D99 Type I Signal Peptidase Implicated Stabilizing the Protein Structure (Type I 신호펩디드 가수분해효소에 존재하는 D99 아미노산 잔기의 구조적 역할 가능성)

  • Sung, Meesook;Eunyoung Han;Lee, Hoyoung
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.140-144
    • /
    • 2003
  • Type Ⅰ signal peptidase is an integral membrane protein that functions to cleave signal peptides from secreted and membrane proteins. The enzyme serves as a potential target for the development of novel antibacterial agents due to its unique physiological properties. Despite being one of the best characterized enzymes, the catalysis of Type Ⅰ signal peptidase still remains controversy over the catalytic serine/lysine dyad mechanism. It appears that the dyad proteases are generally less efficient than the prototypical serine/histidine/aspartic acid triad found in most enzymes, although Type Ⅰ signal peptidase is an exception to this rule. In this paper, we have proposed that Type Ⅰ signal peptidase may act as the serine/lysine/aspartic acid triad cataltytic mechanism. Therefore, the aspartic acid 99 residue in the E. coli signal peptidase was chosen and mutated to an alanine to see if there is any possible role of the aspartic acid in the catalytic function. Type Ⅰ signal peptidase D99A protein was inactive in vitro assay using the procoat synthesized by in vitro transcription translation. However, the mutant was active using a highly sensitive in vivo assay. Pulse-chase experiments show that the replacement of aspartic acid 99 with alanine results in a very unstable signal peptidase molecule. Therefore, we conclude that it is unlikely that the residue is directly involved in catalysis, but rather plays an important role in stabilizing the protein structure.

Functional Characterization of Phosphorylation of the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nucleocapsid Protein (PRRS 바이러스 Nucleocapsid 단백질 인산화의 기능학적 연구)

  • Lee, Chang-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.287-292
    • /
    • 2009
  • The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a basic multifunctional protein which has been reported to be a serine phosphoprotein with yet-identified functions. As a first step towards understanding the general role of N protein phosphorylation during virus replication, the non-phosphorylated mutant N gene was constructed by mutating all serine residues to alanine. This recombinant N protein was identified to be unphosphorylated, confirming that serine residues truly function as core amino acids responsible for N protein phosphorylation. The PRRSV N protein has been shown to possess the biological features of nuclear localization and N-N homodimerization which individually play critical roles in virus infection. In the present study, therefore, it was attempted to investigate whether these two properties of the N protein are modulated by its phosphorylation status. However, experimental results showed that the non-phosphorylated N protein was still present in the nucleus and nucleolus, and was able to associate with itself by non-covalent interactions. Taken together, the data suggest phosphorylation-independent regulation of N protein nuclear transport or oligomerization, thereby implying the potential involvement of phosphorylation in regulating the activities of the N protein at other levels including RNA-binding capacity.

Purification and Characterization of Manganese-Dependent Alkaline Serine Protease from Bacillus pumilus TMS55

  • Ibrahim, Kalibulla Syed;Muniyandi, Jeyaraj;Pandian, Shunmugiah Karutha
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2011
  • The purification and characterization of a $Mn^{2+}$-dependent alkaline serine protease produced by Bacillus pumilus TMS55 were investigated. The enzyme was purified in three steps: concentrating the crude enzyme using ammonium sulfate precipitation, followed by gel filtration and cation-exchange chromatography. The purified protease had a molecular mass of approximately 35 kDa, was highly active over a broad pH range of 7.0 to 12.0, and remained stable over a pH range of 7.5 to 11.5. The optimum temperature for the enzyme activity was found to be $60^{\circ}C$. PMSF and AEBSF (1 mM) significantly inhibited the protease activity, indicating that the protease is a serine protease. $Mn^{2+}$ ions enhanced the activity and stability of the enzyme. In addition, the purified protease remained stable with oxidants ($H_2O_2$, 2%) and organic solvents (25%), such as benzene, hexane, and toluene. Therefore, these characteristics of the protease and its dehairing ability indicate its potential for a wide range of commercial applications.