• Title/Summary/Keyword: Series propeller

Search Result 46, Processing Time 0.02 seconds

Development of a High-Efficiency KRISO Series Propeller (KRISO 고효율 계열 프로펠러 개발)

  • Ilsung Moon;Gundo Kim;Cheolsoo Park;Seunghyun Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.416-423
    • /
    • 2023
  • Recently, the design point of the propeller is gradually changing due to the demand for energy saving and environmental protection. Until recently, self-propulsion model tests were conducted using stock propellers and geometry information was provided to propeller designers, but the range of existing stock propellers did not keep up with the changing design points, and the range of series propellers required in the initial design was also insufficient. Future propeller performance requires high performance and eco-friendliness, and the need for expansion of series propellers has increased. In order to respond to future needs and provide a wide range of advantages in propeller design, KRISO manufactures about 100 series propellers and builds series data through a model tests. In this paper, the approach method for deriving the representative optimal shape to be applied to the 4-blade series propeller in the initial stage of series propeller development was summarized.

Study on Propeller Design for Fishing Vessel's High Efficiency Standard Series Propeller (KF Series) (어선용 고효율 표준 시리즈(KF 시리즈) 프로펠러를 위한 설계 연구)

  • Lee, Won-Joon;Kim, Moon-Chan;Chun, Jang-Ho;Jang, Jin-Yeol;Mun, Won-Jun;Lee, Chang-Sup
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The present study deals with the propeller design for the standard new propeller series so called KF Series for 52ton class fishing vessel. The MAU or B series have been usually used for the fishing vessel's propeller, which are to be improved in consideration of the efficiency as well as the cavitation point of view. The high technology of propeller design has been applied to the design of 52ton class fishing vessel's propeller in the present study. The new designed series propellers will be validated by the experimental results whose data will be also used for the new series chart.

Development of KD-Propeller Series Using a New Blade Section

  • Lee, Jin-Tae;Kim, Moon-Chan;Ahn, Jong-Woo;Kim, Ho-Chung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.76-90
    • /
    • 1993
  • A new propeller series is developed using the newly developed blade section (KH 18 section) which has better cavitation characteristics and higher lift-drag ratio at wade angle-of-attack range than a conventional section. The radial patch distribution of the new series propellers is variable stance they were designed adaptively to a typical wake distribution. Basic geometric particulars of the series propellers. such as chord length, thickness, skew and rake distributions, are determined on the basis of recent full scale propeller geometric data. The series is developed for propellers having 4 blades, and blade area ratios of 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are varied as 0.5, 0.6, 0.7, 0.95 and 1.1 for each blade area ratio. The new propeller series consists of 20 propellers and is named as the KD(KRISO-DAEWOO)-propeller series. Propeller open-water tests are performed at the towing tank, and cavitation observation tests and fluctuating pressure tests are carried out at the cavitation tunnel of KRISO. $B_{p}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller open-water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The cavity extent predicted by the KD-cavitation chart would be more accurate compared to that by an existing cavitation charts, such as the Burrll's cavitation chart, since the former is derived from the cavitation observation test results in a typical ship's wake, while the lather is derived from the test results in a uniform flow.

  • PDF

Study on Performance of High Efficiency Series Propeller (KF Series) for Fishing Vessels (어선용 고효율 시리즈(KF 시리즈) 프로펠러에 대한 성능 연구)

  • Jang, Jin-Yeol;Kim, Moon-Chan;Lee, Won-Joon;Mun, Won-Jun;Lee, Chang-Sup;Moon, Il-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.416-424
    • /
    • 2012
  • The MAU series has been usually used for the fishing vessel's propeller, which has been improved in consideration of the efficiency as well as the cavitation point of view in Pusan National University. The high efficiency standard series propeller(KF series) has been applied to the design of 52ton class fishing vessel's propeller in the previous study. The experimental study for the performance of the design propellers called KF series for 52 ton class fishing vessel has been conducted with five cases in Korea Ocean Research & Development Institute towing tank. The model tests have been carried out at different pitch ratio and expanded area ratio in comparison with the standard propeller to make the series chart. The KF series chart and the formula for performance expression have been completed on the basis of the experiment result.

Systematic probabilistic design methodology for simultaneously optimizing the ship hull-propeller system

  • Esmailian, Ehsan;Ghassemi, Hassan;Zakerdoost, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.246-255
    • /
    • 2017
  • The proposed design methodology represents a new approach to optimize the propeller-hull system simultaneously. In this paper, two objective functions are considered, the first objective function is Lifetime Fuel Consumption (LFC) and the other one is cost function including thrust, torque, open water and skew efficiencies. The variables of the propeller geometries (Z, EAR, P/D and D) and ship hull parameters (L/B, B/T, T and $C_B$) are considered to be optimized with cavitation, blades stress of propeller. The well-known evolutionary algorithm based on NSGA-II is employed to optimize a multi-objective problem, where the main propeller and hull dimensions are considered as design variables. The results are presented for a series 60 ship with B-series propeller. The results showed that the proposed method is an appropriate and effective approach for simultaneously propeller-hull system design and is able to minimize both of the objective functions significantly.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

Analysis of the Structural Failure of Marine Propeller Blades

  • Lee, Chang-Sup;Kim, Yong-Jik;Kim, Gun-Do;Nho, In-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • A series of detailed study was performed to identify the sources of the propeller blade failure and resolve the problem systematically, by use of the theoretical tools and by the direct measurement and observation in the full-scale sea trials. The selection of inexperienced propulsion control system with a reversible gear system is shown to cause the serious damage to the propeller blades in crash astern maneuver, when the rotational direction of the propeller is changed rapidly. Quasi-steady analysis for propeller blade strength using FEM code in bollard backing condition indicates that the safety factor should be order of 18∼20 to avoid the structural failure for the selected propeller geometry and reduction gear system.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

Numerical Study of Flow Characteristics of Marine Propeller (수중 프로펠러의 유동특성에 관한 수치적 연구)

  • Kim Yong-Moon;Jang Jin-Ho;Park Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.139-143
    • /
    • 2002
  • The purpose of this paper is to develop the CFD code to consider the viscous flow features of the marine propeller. The flow of the marine propeller has been numerically analyzed by using three dimensional viscous incompressible Navier-Stokes equation. The model used in this study is Screw B with 4 blades whose pitch ratio is 1 in Ka-4-55 screw series. The result of the analysis was compared with panel method.

  • PDF