• Title/Summary/Keyword: Series Arcing Fault

Search Result 4, Processing Time 0.024 seconds

Series Arcing Fault Detection Method Using Harmonics Analysis of Supply Current (전원 전류 고조파 해석에 의한 직렬 아크 고장 검출 방안)

  • Ahn, Jeongwoon;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.30-37
    • /
    • 2014
  • Recently, Concerns of imbalance for power supply has been raised by the increase of electric power consumption, but the interest of electric safety is still lacking due to the incompleteness of regulations. Particularly, Arcing fault, direct cause of electric fire accidents, is difficult to detect, interrupt due to unformal signal behaviour in previous research and apply to real system. In this paper, Arcing fault simulator device was fabricated to investigate the characteristics of series arcing fault and simulated the faults in various real load. Also, this study are analysed arcing fault signal by using the harmonic analysis of the acquired data from the current of the power supply and proposed the methods to prevent the series arcing fault accidents in advance.

Analysis of Series Arc-Fault Signals Using Wavelet Transform (웨이블렛 변환을 이용한 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.494-500
    • /
    • 2008
  • This paper presents the analyzed result of the series arc fault current by using the discrete wavelet transform. The series arcing is caused by a loose connection in series with the load circuit. The series arc current is limited to a moderate value by the resistance of the device connected to the circuit, such as an appliance or a lighting system. The amount of energy in the sparks from the series arcing is less than in the case of parallel arcing but only a few amps are enough to be a fire hazard. Therefore, it is hard to detect the distinctive difference between a normal current and a intermittent arc current. This paper, presents the variation of the ratio of peak values and RMS values of the series arc fault current, and proposes the novel series arc fault detecting method by using the discrete wavelet transform. Loads such as a CFL lamp, a vacuum cleaner, a personal computer, and a television, which has the very similar normal current with the arc current, were selected to confirm the novel method.

Development of Arc-Fault Detecting Technique through Analysis of Wire Ignition behavior by Series-Arc-Fault Currents (직렬아크고장 전류에 의한 전선 발화 특성 분석을 통한 아크고장 검출 기술의 개발)

  • Lim, Young-Bae;Jeon, Jeong-Chay;Bae, Seok-Myung;Kim, Tae-Kuek
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.205-207
    • /
    • 2009
  • In 2007, 9,128 fires are attributed to electrical equipments. These fires resulted in 29 deaths and 262 injuries. Arc-faults were one of the major causes of these fires. When an unintended arc-fault occurs, it generates intense heat that can easily ignite surrounding combustibles. Conventional circuit breakers only respond to overloads, short circuits, and leakage currents. Therefore, the breakers do not protect against arcing conditions. This paper presents results obtained in experiments on ignition behavior of wire by series arc fault currents and techniques developed to detect the arc-faults. The developed technique was tested after installation to make sure they are working properly and protecting the circuit. If the developed arc detecting technique is applied, the electrical fires caused by an arc-fault can be reduced.

  • PDF

Development of Arc-Fault Detection Technique (아크고장 검출기술의 개발)

  • Lim, Young-Bae;Jeon, Jeong-Chay;Park, Chan-Eom;Bae, Seok-Myeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1810-1816
    • /
    • 2009
  • In 2007, 9,128 fires were actually caused by electrical faults and these fires resulted in 29 deaths and 262 injuries. Arc-faults were one of the major causes of these fires. When an unintended arc-fault occurs, it generates intense heat that can easily ignite surrounding combustibles. But, because conventional circuit breakers only respond to overloads, short circuits, and leakage currents, the breakers do not protect against arcing conditions. This paper presents results obtained in experiments on ignition behavior of wire by series arc fault currents and techniques developed to detect the arc-faults. The developed technique was tested after installation to make sure that they are working properly and protecting the circuit. If the developed arc fault detection technique is applied, the electrical fires caused by an arc-fault can be reduced.