• 제목/요약/키워드: Sericinus montela Gray

검색결과 1건 처리시간 0.013초

Temperature-Dependent Development of the Swallowtail Butterfly, Sericinus montela Gray

  • Hong, Seong-Jin;Kim, Sun Young;Ravzanaadii, Nergui;Han, Kyoungha;Kim, Seong-Hyun;Kim, Nam Jung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제29권2호
    • /
    • pp.153-161
    • /
    • 2014
  • The aim of this study is to investigate the effects of ambient thermal environments on the development of swallowtail butterflies (Sericinus montela Gray). Developmental durations and survival rates of S. montela were examined at two crucial developmental stages, embryonic and larval development, at varying temperatures ranging from $15^{\circ}C$ to $35^{\circ}C$. As expected, our results indicated that increasing temperatures decreased the developmental duration and survival rate of the eggs. However, the larvae and pupae showed maximum survival rates at $20.0^{\circ}C$ and $25.0^{\circ}C$, and the represented durations were similar to those of the eggs. Larval development was stage-specific, revealing that the fourth and fifth instars at the later stages were more susceptible to temperature variation. When considering both parameters, the optimal development of S. montela occurred within the temperature range of $20.0-25.0^{\circ}C$. The lower threshold for the complete development of S. montela from eggs to eclosion of adults was calculated at $10.6^{\circ}C$ by linear regression analysis. The estimated value is similar to that of other endemic insects distributed in temperate climate zones, which indicates that S. montela belongs to a small group of swallowtails adjusted to low ambient temperatures. From the results, we predict that the full development of S. montela could be achieved within the temperature range of $17.5-30.0^{\circ}C$. Embryonic development ceased at both test temperature extremes, and no further larval development proceeded after the third instar at $35.0^{\circ}C$. These results suggest that embryogenesis can be significantly influenced by slight variations in the ambient thermal environment that fall below the optimal range.