• 제목/요약/키워드: Serendipity measure

검색결과 2건 처리시간 0.024초

세렌디피티 지표를 이용한 추천시스템의 품질 평가 (Evaluating the Quality of Recommendation System by Using Serendipity Measure)

  • 체렌돌람;신택수
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.89-103
    • /
    • 2019
  • 최근 추천시스템의 품질평가 관점에서 이에 대한 다양한 연구들이 진행되고 있다. 추천시스템은 기본적으로 사용자들에게 특정 아이템에 대한 개인화된 추천을 제공하는데 목적이 있으며, 대부분의 추천시스템은 항상 사용자 또는 아이템과 가장 관련 있는 아이템을 추천한다. 그리고 이러한 추천시스템의 성과는 전통적으로 다양한 예측정확도 등에 초점을 두어 왔다. 그러나, 추천시스템은 예측가능성 차원에서 정확해야 할 뿐만 아니라 사용자들에게 유용해야 한다. 특히 최근의 추천시스템에 대한 연구로서, 추천시스템의 평가기준에 속하는, 추천시스템에 대한 사용자 만족도(품질)는 추천시스템이 얼마나 정확하게 추천하느냐 뿐만 아니라 사용자의 의사결정에 얼마나 충분히 도움이 되는지와 관계가 깊다. 예를 들어, 특히 높은 수준의 세렌디티피한 추천은 사용자들이 뜻밖의 아이템이면서 흥미로운 아이템을 찾는데 도움이 된다. 여기서, 세렌디피티란 추천 아이템이 사용자에게 매력적인 동시에 뜻밖의(비기대성의) 아이템인 정도를 의미한다. 본 연구는 추천시스템의 성과를 나타내는 세렌디피티 지표를 추천시스템에 적용하여 추천시스템의 품질을 평가하는 것을 목표로 한다. 본 연구에서는 세렌디피티 지표는 관련성(매력)이 있는 동시에 뜻밖인(비기대성의) 아이템을 추천하는 정도로 정의하고, 이 세렌디피티 지표를 측정하기 위해, 추천시스템이 사용자들에게 예상치 못한 유용한 아이템을 찾을 수(또는 추천할 수) 있는 정도를 평가하였다. 본 연구의 주요 실증분석결과로는, 아이템기반 협력 필터링 기법이 사용자기반 협력 필터링 기법보다 더 높은 세렌디피티값을 가지며, 따라서, 추천시스템의 품질평가 차원에서 아이템기반 협력 필터링 기법은 사용자기반 협력 필터링 기법보다는 더 좋은 추천 품질을 갖고 있음을 보여 주었다.

추천시스템의 효과적 도입을 위한 소셜네트워크 분석 (Social Network Analysis for the Effective Adoption of Recommender Systems)

  • 박종학;조윤호
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.305-316
    • /
    • 2011
  • 협업필터링은 다양한 분야에서 널리 활용되고 있지만 협업필터링의 추천 성능은 적용하는 기업의 비즈니스 형태나 발생하는 거래 데이터의 특성에 따라 다르게 나타나고 있다. 기업에서 협업필터링 추천시스템을 구축하려면 상당한 시간과 비용이 소요되기 때문에 구축된 추천시스템의 성과가 높지 않다면 기업 자원의 낭비를 초래할 뿐만 아니라 부정확한 추천서비스를 받는 고객들의 불만을 살 수 있다. 따라서 추천시스템 도입을 검토할 때 기업이 갖고 있는 데이터의 특성을 파악하고 이를 통해 추천시스템을 도입하는 것이 타당한지 사전에 예측할 수 있다면 불필요한 도입으로 인한 경제적 손실과 고객 만족도 저하를 막을 수 있을 것이다. 기존 연구에서는 협업필터링 추천 성과에 희박성, 우연성, 커버리지 등이 영향을 미칠 수 있다고 설명하고 있지만 이러한 요인들이 어떻게 얼마나 추천 성과에 영향을 미치는지, 요인들 간에 어떠한 상관관계가 있는지는 현재까지 구체적으로 밝혀진 바가 없다. 본 연구에서는 구매 트랜잭션으로부터 생성된 소셜네트워크로부터 밀도, 군집화계수, 집중도 등의 구조적 지표를 측정한 후 이들이 추천성과에 어떻게 영향을 미치는지 통계적 분석을 통해 실증적으로 규명한다. 이를 통해 협업필터링 추천시스템에 대한 도입 여부를 결정하고자 할 때 유용하게 사용될 수 있는 지침을 제공하고자 한다.