• Title/Summary/Keyword: Sequential Quadratic Programming (SQP)

Search Result 110, Processing Time 0.024 seconds

Study on the Development of an Optimal Hull Form

  • Cho Hee-Jong;Lee Gyoung-Woo;Youn Soon-Dong;Chun Ho-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.603-609
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP( sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verify the validity of the developed program the numerical calculations for Wigley hull and Series 60 Cb=0.6 hull are performed and the results obtained after the numerical calculations are compared with the initial hulls.

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

An Application of Optimization method for Efficient Operation of Micro Grid (마이크로그리드의 효율적 운영을 위한 최적화기법의 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.50-55
    • /
    • 2012
  • This paper presents an application of optimization method for efficient operation in micro grid. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The cost function of fuel cell plant considers the efficiency of fuel cell. Particle swarm optimization(PSO) and sequential quadratic programming(SQP) are used for solving the problem of microgrid system operation. Also, from the results this paper presents the way to attend power markets which can buy and sell power from upper lever grids by connecting a various generation resources to micro grid.

Design Optimization of Brake System Using Multi-Rate Spring (Multi-Rate 스프링을 이용한 제동장치의 최적설계)

  • Jung, Eui-Man;Won, Jun-Ho;Choi, Joo-Ho;Shim, In-Seob
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.407-410
    • /
    • 2011
  • 본 연구에서는 탑승객의 안전과 국내 환경에 적합한 제동거리 확보를 위해 새로운 개념의 스프링을 사용한 제동장치를 설계하고자 한다. 새로운 제동장치에 사용되는 스프링은 변위에 따라 감쇠 성능 특성을변화시키는 Multi-Rate 변위 감응형 스프링을 최적화하여 적용하였다. 이를 위한 최적화 기법으로는 비선형 최적화 기법인 순차적 2차계획법(Sequential Quadratic Programming, SQP)을 사용하였으며 먼저 Ziprider의 운동을 제동거리와 제동시 발생하는 회전각의 관계로 표현 가능한 수치모델을 개발하였다. 또한 개발된 수치모델은 Matlab을 이용하여 코드화하고 그 결과를 RecurDyn과 비교 분석하였다.

  • PDF

Sequential Quadratic Programming based Global Path Re-Planner for a Mobile Manipulator

  • Lee Soo-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.318-324
    • /
    • 2006
  • The mobile manipulator is expected to work in partially defined or unstructured environments. In our global/local approach to path planning, joint trajectories are generated for a desired Cartesian space path, designed by the global path planner. For a local path planner, inverse kinematics for a redundant system is used. Joint displacement limit for the manipulator links is considered in the motion planner. In an event of failure to obtain feasible trajectories, the task cannot be accomplished. At the point of failure, a deviation in the Cartesian space path is obtained and a replanner gives a new path that would achieve the goal position. To calculate the deviation, a nonlinear optimization problem is formulated and solved by standard Sequential Quadratic Programming (SQP) method.

Performance Comparison of CEALM and NPSOL

  • Seok, Hong-Young;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.4-169
    • /
    • 2001
  • Conventional methods to solve the nonlinear programming problem range from augmented Lagrangian methods to sequential quadratic programming (SQP) methods. NPSOL, which is a SQP code, has been widely used to solve various optimization problems but is still subject to many numerical problems such as convergence to local optima, difficulties in initialization and in handling non-smooth cost functions. Recently, many evolutionary methods have been developed for constrained optimization. Among them, CEALM (Co-Evolutionary Augmented Lagrangian Method) shows excellent performance in the following aspects: global optimization capability, low sensitivity to the initial parameter guessing, and excellent constraint handling capability due to the benefit of the augmented Lagrangian function. This algorithm is ...

  • PDF

Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance (고속 Ro-Pax선형의 조파저항성능 향상을 위한 최적 선형설계에 관한 연구)

  • Park, Dong-Woo;Choi, Hee-Jong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.787-793
    • /
    • 2012
  • A hull form design technique to enhance the wave-making resistance performance for a medium size high speed Ro-Pax ship was studied introducing an optimization method and an automatic hull form modification method. SQP(sequential quadratic programming) was applied as the optimization algorithm and the geometry of hull surface was represented and modified using the NURBS(Non-Uniform Rational B-Spline). The wave-making resistance performance as an objective function in the optimization procedure was evaluated using the Rankine source panel method in which nonlinearity of the free surface boundary conditions and the trim and sinkage of the ship was fully taken into account. Using the Ro-Pax ship as a base hull, the hull-form optimization method was applied to obtain the hull shape that produced the lower wave-making resistance. To verify the validity of the hull-form optimization method, the numerical results was compared with the model test results.

Multidisciplinary Design Optimization of Earth Observation Satellite Conceptual Design using Collaborative Optimization (Collaborative Optimization을 이용한 지구관측위성의 다분야 통합 최적 개념설계)

  • Kim, Hongrae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.568-583
    • /
    • 2015
  • In this paper, the conceptual design procedure and results of Earth observation satellite through Multidisciplinary Design Optimization (MDO) are described. The conceptual design equations for major parameters are developed based on the established database of Earth observation satellite so far. The MDO conceptual design tool for Earth observation satellite was developed by applying the Collaborative Optimization (CO) architecture amongst several MDO architecture techniques available today. The objective for this research was set to minimize the total mass of satellite as well as satisfy all design constraints by utilizing the Sequential Quadratic Programming (SQP) algorithm. Eventually the effectiveness of MDO conceptual design tool was verified through proposing a comparison between the conceptual design results with MDO applied and the design specification of ASNARO-1 & IKONOS-2 Earth observation satellite.

A Study on Updating of Analytic Model of Dynamics for Aircraft Structures Using Optimization Technique (최적화 기법을 이용한 비행체 구조물 동특성 해석 모델의 최신화 연구)

  • Lee, Ki-Du;Lee, Young-Shin;Kim, Dong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • Analytical modal verification is considered as the process to provide an acceptable description of the subject structure's behaviour. In general, results of original analytical model are different with actual structure results to uncertainty like non-linearity of material, boundary and modified shape, etc. In this paper, the dynamic model of glider's wing is correlated with static deformation and vibration test results by goal-attainment method, multi-objects optimization technique. The structural responses are predicted by using finite element method and optimization is carried out by using the SQP(sequential quadratic programming) method which is widely used in the constrained nonlinear optimization problem. The MAC(Modal Assurance Criterion) is used to modify the mode shapes and quantify the similarity.

Optimal Design of Passive Gravity Compensation System for Articulated Robots (수직다관절 로봇의 중력보상장치 최적설계)

  • Park, Jin-Gyun;Lee, Jae-Young;Kim, Sang-Hyun;Kim, Sung-Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • In this paper, the optimal design of a spring-type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer-valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.