• Title/Summary/Keyword: Sequential Ordering Problem

Search Result 4, Processing Time 0.021 seconds

A Comparative Study of Genetic Ordering for the Sequential Ordering Problem (Sequential Ordering Problem을 위한 유전 연산자의 비교)

  • 이혜리;이건명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.42-44
    • /
    • 1998
  • Sequential Ordering Problem(SOP)은 여러 개의 도시를 방문함에 있어 '어떤 도시를 다른 도시보다 먼저 방문해야 한다'는 선행제약이 있는 비대칭 순회 세일즈맨 문제(Traveling Salesman Problem)로서, 주어진 선행 제약을 만족하면서 모든 도시를 한번씩만 경유하는 가장 짧은 경로를 찾는 NP-Complete에 속하는 문제이다. 유전자 알고리즘은 SOP와 같은 조합 최적화문제에 대해 유용한 메타휴리스틱의 한가지이다. 본 논문에서는 SOP에 유전자 알고리즘을 적용할 때, 선행제약을 만족하는 해를 생성하는데 사용할 수 있는 선행관계유지 유전 연산자를 소개하고 이를 비교한다. 비교하는 유전 연산자는 선행관계유지 교차연산자, 선행관계유지 순서기반 교차연산자, 최대부분순서/임의삽입 연산자, 선행관계유지 간선재결합 연산자이다.

  • PDF

Optimal Conveyor Selection Problem on a Diverging Conveyor Junction Point (컨베이어 분기점에서의 최적 인출 컨베이어 선택 문제)

  • Han, Yong-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.118-126
    • /
    • 2009
  • This research investigates the problem of minimizing setup costs in resequencing jobs having first-in, first-out(FIFO) constraints at conveyorized production or assembly systems. Sequence changing at conveyor junctions in these systems is limited due to FIFO restriction. We first define the general problem of resequencing jobs to workstations satisfying precedence relationships between jobs(Generalized Sequential Ordering Problem, GSOP). Then we limit our scope to FIFO precedence relationships which is the conveyor selection problem at a diverging junction(Diverging Sequential Ordering Problem, DSOP), modeling it as a 0-1 integer program. With the capacity constraint removed, we show that the problem can be modeled as an assignment problem. In addition, we proposed and evaluated the heuristic algorithm for the case where the capacity constraint cannot be removed. Finally, we discuss the case study which motivated this research and numerical results.

Elimination of Subtours Obtained by the Out-of-Kilter Algorithm for the Sequential Ordering Problem (선행순서결정문제를 위한 Out-of-Kilter 해법의 적용과 부분순환로의 제거)

  • Kwon, Sang-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.47-61
    • /
    • 2007
  • This paper presents two elimination methods of subtours, which is obtained by applying the Out-of-Kilter algorithm to the sequential ordering problem (SOP) to produce a feasible solution for the SOP. Since the SOP is a kind of asymmetric traveling salesman problem (ATSP) with precedence constraints, we can apply the Out-of-Kilter algorithm to the SOP by relaxing the precedence constraints. Instead of patching subtours, both of two elimination methods construct a feasible solution of the SOP by using arcs constructing the subtours, and they improve solution by running 3-opt and 4-opt at each iteration. We also use a perturbation method. cost relaxation to explore a global solution. Six cases from two elimination methods are presented and their experimental results are compared to each other. The proposed algorithm found 32 best known solutions out of the 34 instances from the TSPLIB in a reasonable time.

A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems (서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘)

  • Seo Dong-Il;Moon Byung-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.