In this paper, we propose a displacement measurement method based on deep learning using image data obtained from tensile tests of a material specimen. We focus on the fact that the sequential images during the tension are generated and the displacement of the specimen is represented in the image data. So, we designed sample generation model which makes sequential images of specimen. The behavior of generated images are similar to the real specimen images under tensile force. Using generated images, we trained and validated our model. In the deep neural network, sequential images are assigned to a multi-channel input to train the network. The multi-channel images are composed of sequential images obtained along the time domain. As a result, the neural network learns the temporal information as the images express the correlation with each other along the time domain. In order to verify the proposed method, we conducted experiments by comparing the deformation measuring performance of the neural network changing the displacement range of images.
Ivan Vincent;Thanh.T.T.P;Suk-Hwan Lee;Ki-Ryong Kwon
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.97-104
/
2024
Leukemia induced death has been listed in the top ten most dangerous mortality basis for human being. Some of the reason is due to slow decision-making process which caused suitable medical treatment cannot be applied on time. Therefore, good clinical decision support for acute leukemia type classification has become a necessity. In this paper, the author proposed a novel approach to perform acute leukemia type classification using sequential neural network classifier. Our experimental result only covers the first classification process which shows an excellent performance in differentiating normal and abnormal cells. Further development is needed to prove the effectiveness of second neural network classifier.
현재 인공신경망은 단일 작업에 대해선 뛰어난 성능을 보이나, 다른 종류의 작업을 학습하면 이전 학습 내용을 잊어버리는 단점이 있다. 이를 catastrophic forgetting이라고 한다. 인공신경망의 활용도를 높이긴 위해선 이 현상을 극복해야 한다. catastrophic forgetting을 극복하기 위한 여러 노력이 있다. 하지만 많은 노력이 있었음에도 완벽하게 catastrophic forgetting을 극복하지는 못하였다. 본 논문에서는 여러 노력 중 elastic weight consolidation(EWC)에 사용되는 핵심 개념을 이용하여, 순차적 반복학습을 제시한다. 인공신경망 학습에 많이 쓰이는 MNIST를 확장한 EMNIST 데이터 셋을 이용하여 catastrophic forgetting 현상을 재현하고 이를 순차적 반복학습을 통해 극복하는 실험을 진행하였으며, 그 결과 모든 작업에 대해서 학습이 가능하였다.
The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.
The main purpose of this paper is to present selection criteria for ROK Airforce pilot training candidates in order to save costs involved in sequential pilot training. We use classification models such Decision Tree, Logistic Regression and Neural Network based on aptitude test results of 288 ROK Air Force applicants in 1994-1996. Different models are compared in terms of classification accuracy, ROC and Lift-value. Neural network is evaluated as the best model for each sequential flight test result while Logistic regression model outperforms the rest of them for discriminating the last flight test result. Therefore we suggest a pilot selection criterion based on this logistic regression. Overall. we find that the factors such as Attention Sharing, Speed Tracking, Machine Comprehension and Instrument Reading Ability having significant effects on the flight results. We expect that the use of our criteria can increase the effectiveness of flight resources.
Communications for Statistical Applications and Methods
/
제9권1호
/
pp.155-166
/
2002
Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.
Leukemia induced death has been listed in the top ten most dangerous mortality basis for human being. Some of the reason is due to slow decision-making process which caused suitable medical treatment cannot be applied on time. Therefore, good clinical decision support for acute leukemia type classification has become a necessity. In this paper, the author proposed a novel approach to perform acute leukemia type classification using sequential neural network classifier. Our experimental result only cover the first classification process which shows an excellent performance in differentiating normal and abnormal cells. Further development is needed to prove the effectiveness of second neural network classifier.
신경망은 전통적인 시계열 기법들에 비해 대체적으로 예측성능의 우수함이 입증되었으나 계절성과 추세성을 갖는 시계열자료에 대해 예측력이 떨어지는 단점을 가지고 있다. 최근에는 Ensemble 기법인 Bagging Algorithm과 신경망의 혼합모형인 Bagging Neural Network이 개밭되었다. 이 기법은 분산과 편향을 많이 줄여줌으로써 더 좋은 예측을 할 수 있는 것으로 나타났다. 그러나 Ensemble 기법을 이용한 예측모형은 시계열자료를 적합 시키는데 있어 초기부여확률 및 예측자 선정시의 문제점을 가지고 있다. 이에 본 연구에서는 이러한 문제점을 해결하고 더불어 예측력을 향상시키기 위한 방법으로 초기부여확률이 균일분포가 아닌 순차적인 형태의 분포를 제시하고 신경망을 예측자로 활용한 변형된 Ensemble Algorithm을 제안한다. 또한 예측모형의 평가를 위해 실제자료를 가지고 기존 예측모형들과 제안한 방법을 이용하여 예측하고 각 MSE의 비교를 통하여 예측정확도를 알아보고자 한다.
In the preliminary design stage of an RC 3D-frame, repeated sequential analyses to determine optimal members' sizes and the investigation of the parameters required to minimize the differential column shortening are computational effort consuming, especially when considering various types of loads such as dead load, temperature action, time dependent effects, construction and live loads. Because the desired accuracy at this stage does not justify such luxury, two backpropagation feedforward artificial neural networks have been proposed in order to approximate this information. Instead of using a commercial software package, many references providing advanced principles have been considered to code a program and generate these neural networks. The first one predicts the typical amount of time between two phases, needed to achieve the minimum maximorum differential column shortening. The other network aims to prognosticate sequential analysis results from those of the simultaneous analysis. After the training stages, testing procedures have been carried out in order to ensure the generalization ability of these respective systems. Numerical cases are studied in order to find out how good these ANN match with the sequential finite element analysis. Comparison reveals an acceptable fit, enabling these systems to be safely used in the preliminary design stage.
International Journal of Advanced Culture Technology
/
제8권2호
/
pp.231-238
/
2020
Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and C-LSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.