• 제목/요약/키워드: Sequencing Batch Reactor

검색결과 224건 처리시간 0.025초

가축분뇨 유기물질부가별 연속회분식반응조 효율에 관한 연구 (A Study on the Treatment Efficiency of Sequencing Batch Reactor with the Livestock Nightsoil Organic Loading Rate Variance)

  • 여운호
    • 한국환경보건학회지
    • /
    • 제21권4호
    • /
    • pp.32-36
    • /
    • 1995
  • This study was carried out to investigate the treatment efficiency of sequencing batch reactor when the livestock nightsoil organic loading rate was varied. Sequencing batch reactor was operated with the variance of influent BOD concentration and operating cycle. The average influent BOD concentrations in this study were 150 mg/l, 200 mg/l, 250 mg/l, 300 mg/l, 350 mg/l, 400 mg/l, 450 mg/l and 500 mg/l in the condition of 1~3 cycles/day. The treatment efficiency of sequencing batch reactor is good at the volumetric loading of 0.05~0.20 kg $BOD/m^3\cdot day$. Therefore, sequencing batch reactor process would become an effective alternative for the process of small scale livestock nightsoil treatment plants.

  • PDF

연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구 (A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor)

  • 박민정;김동석
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

호흡률에 기반한 연속회분식반응조의 포기공정 제어 (Aeration control based on respirometry in a sequencing batch reactor)

  • 김동한;김성홍
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Volatile Fatty Acids Production During Anaerobic and Aerobic Animal Manure Bio-treatment

  • Hong, J.H.
    • 한국축산시설환경학회지
    • /
    • 제13권3호
    • /
    • pp.219-232
    • /
    • 2007
  • Odors from manures are a major problem for livestock production. The most significant odorous compounds in animal manure a.e volatile fatty acids(VFAs). This work reviews the VFAs from the anaerobic sequencing biofilm batch reactor(ASBBR), anaerobic sequencing batch reactor(ASBR), solid compost batch reactor(SCBR), and aerobic sequencing batch reactor(SBR) associated with the animal manure biological treatment. First, we describe and quantify VFAs from animal manure biological treatment and discuss biofiltration for odor control. Then we review certain fundamentals aspects about Anaerobic and aerobic SBR, composting of animal manure, manure compost biofilter for odorous VFAs control, SBR for nitrogen removal, and ASBR for animal wastewater treatment systems considered important for the resource recovery and air quality. Finally, we present an overview for the future needs and current experience of the biological systems engineering for animal manure management and odor control.

  • PDF

연속 회분식 반응기와 연속 회분식 생물막 반응기의 유기물, 질소 및 인의 동시 제거에 관한 비교 연구 (A Comparison Study on the Simultaneous Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Reactor and Sequencing Batch Biofilm Reactor)

  • 박영식;김동석
    • 한국환경보건학회지
    • /
    • 제31권2호
    • /
    • pp.152-159
    • /
    • 2005
  • Laboratory scale experiments were conducted to study the applicability, and to compare the performance of two types of sequencing batch reactor (SBR)systems, a conventional SBR and sequencing batch biofilm reactor (SBBR) on the biological nitrogen and phosphorus removal. The nitrification rate in SaR was higher than that in SBBR both in high influent TOC concentration. The denitrification was completed at the first non-aeration period in SBR, however, the additional non-aeration period should be installed or the first aeration period should be extended more in order to complete the nitrogen removal in SBBR. The time at the first aeration period was more needed as about 4-5 h in order to uptake all the released $PO_4^{3-}\;-P$ at the first non-aeration period. SBBR needed more operation time, especially the first aeration time, than SBR at the high influent TOC concentration in order to complete nitrogen and phosphorus removal.

SBR을 이용한 축산폐수의 질소 제거 (Nitrogen Removal in Livestock Wastewater Using Sequencing Batch Reactor)

  • 신항식;김구용;이상형;임재림
    • 한국지반환경공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.61-67
    • /
    • 2003
  • 축산폐수를 처리 시 우선 탈수 후 고상은 퇴비화, 액상을 연속회분식반응기(Sequencing batch reactor, SBR)로 이용하여 처리하는 시스템을 구상하였다. 영양염류 제거를 위한 SBR 공정의 안정적인 운전을 위한 운전모드 결정 실험을 수행하였다. K시 공공축산폐수처리장의 원심분리기에서 나온 유출수를 사용한 실험에서 질소를 제거하기 위한 적정 fill ratio는 1/12, SRT는 15일, 폭기/비폭기 주기는 2시간/1시간이었다. 탈질을 위하여 주입한 외부탄소원으로는 메탄올을 사용하였고 single feeding 방법과 step feeding 방법을 사용하였다. 이 결과 step feeding 방법을 사용시 더 효과적으로 유기물을 사용 탈질효율을 증가시킬 수 있었다.

  • PDF

고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화 (Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor)

  • 허준무;박종안;이종화;손부순;장봉기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

Effect of Aeration on Nitrous Oxide ($N_2O$) Emission from Nitrogen-Removing Sequencing Batch Reactors

  • Kim, Dong-Jin;Kim, Yuri
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.99-105
    • /
    • 2013
  • In this study, nitrous oxide ($N_2O$) emission was compared between the operations of two different sequencing batch reactors, conventional sequencing batch reactor (CNVSBR) and simultaneous nitrification and denitrification sequencing batch reactor (SND-SBR), using synthetic wastewater. The CNV-SBR consisted of anoxic (denitrification) and aerobic phases, whereas the SND-SBR consisted of a microaerobic (low dissolved oxygen concentration) phase, which was achieved by intermittent aeration for simultaneous nitrification and denitrification. The CNV-SBR emitted 3.9 mg of $N_2O$-N in the denitrification phase and 1.6 mg of $N_2O$-N in the nitrification phase, resulting in a total emission of 5.5mg from 432mg of $NH_4^+$-N input. In contrast, the SND-SBR emitted 26.2mg of $N_2O$-N under the microaerobic condition, which was about 5 times higher than the emission obtained with the CNV-SBR at the same $NH_4^+$-N input. From the $N_2O$ yield based on $NH_4^+$-N input, the microaerobic condition produced the highest yield (6.1%), followed by the anoxic (0.9%) and aerobic (0.4%) conditions. It is thought that an appropriate dissolved oxygen level is critical for reducing $N_2O$ emission during nitrification and denitrification at wastewater treatment plants.

소규모 오수처리를 위한 $A_{2}O$ SBR과 $A_{2}O$ SBBR에서 유입 유기물 농도변화에 따른 염양염류 제거 특성 비교 (A Comparison of Nutrients Removal Characteristics by the Variation of Organics in $A_{2}O$ SBR and $A_{2}O$ SBBR for the Small Sewerage System)

  • 박영식;정노성;김동석
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.451-461
    • /
    • 2006
  • Laboratory scale experiments were conducted to study the conversion of sludge from conventional activated sludge to nitrogen-phosphorus removal sludge using two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). The nitrogen and phosphorus removal characteristics were similar between SBR and SBBR and the removal efficiencies were very low when the influent TOC concentrations were low. The nitrogen and phosphorus removal efficiencies in SBR were 96% and 77.5%, respectively, which were higher than those in SBBR (88% and 42.5%) at the high influent TOC concentration. In SBBR, the simultaneous nitrification-denitrification was occurred because of the biofilm process. The variations of pH, DO concentration and ORP were changed as the variation of influent TOC concentration both in SBR and SBBR and their periodical characteristics were cleary shown at the high influent TOC concentration. Especially, the pH, DO concentration and ORP inflections, were cleary occurred in SBR compared with SBBR.

변형 연속회분식 반응기를 이용한 오수의 고도처리 (Advanced Sewage Treatment by the Modified SBR(Sequencing Batch Reactor) Process)

  • 김병군;서인석;홍성택;정위득
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.46-51
    • /
    • 2002
  • This study was performed to treat a sewage at the upper stream of dam using modified sequencing batch reactor, During the operating period, average $COD_{cr}$, removal efficiency was about 85% but average T-N and ${PO_4}^{3-}-P$ removal efficiencies were 43% and 30% respectively. Because the organic matter was very low compared with nitrogen and phosphorous in influent($BOD_{5}/{NH_4}^{+}-N{\;}={\;}2,{\;}BOD_{5}/{PO_4}^{3-}-P{\;}={\;}15.6$), nitrogen and phosphorus removal efficiency was relatively low. Average nitrogen removal efficiency was 50 % at $10^{\circ}C$ or above and it was 36 % at $10^{\circ}C$ or below. As reactor was located in outdoor without any thermostat, temperature decreased at least $2.4^{\circ}C$ in the winter season. Therefore, if we would apply this modified sequencing batch reactor to sewage which concentration of organic matter was very low compared with nitrogen and phosphorous, we have to addition of external carbon and installation of any thermostat.