• Title/Summary/Keyword: Sequence pattern analysis

Search Result 321, Processing Time 0.023 seconds

Genetic Diversity Analysis of the Cheju Horse Using Random Amplified Polymorphic DNAs (PCR-RAPD를 이용한 제주말의 유전적 다양성분석)

  • Cho, Byung-Wook;Lee, Kil-Wang
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.521-524
    • /
    • 2004
  • This experiment was carried out to analyze genetic characteristics and to develop the breed specific DNA marker for Cheju-native horse. If this marker contains high repetitive sequences, it is possible to convert a RAPD marker of interest into a single-locus PCR marker called a sequence characterized amplified region(SCAR). Twenty six Cheju-native horse and Fifty thoroughbred genomic DNA were pooled and PCR. were accomplished using 800 random primers. Comparing the pooled DNA from Cheju-native horse and thoroughbred, we found 9 primers which identified markers present in the pooled DNA from breed but absent in the other breed. Among 9 random primers, 6 primers were thoroughbred specific and 3 primers were Cheju-native horse specific. Testing individual horse revealed that 5 marker showed the similar band pattern between Cheju-native horse and Thoroughbred. However, 4 marker were wholly absent in breed while present in the other breed. UBC $126_{3500bp}$, UBC $162_{500bp}$, and UBC $244_{1200bp}$ was detected only Thoroughbred and UBC $562_{560bp}$was detected Cheju-native horse, respectively. After determining of the cloned breed-specific fragment sequence, we designed the SCAR-primers and carried out PCR. Compared to random primer, RAPD-SCAR primer didn't show significantly higher specific band. However, RAPD analysis is useful for genetic characterization of Cheju-native horse.

Molecular Cloning of Two cDNAs Encoding an Insecticidal Toxin from the Spider, Araneus ventricosus, and Construction of a Recombinant Baculovirus Expressing a Spider Toxin

  • Chung, Eun-Hwa;Lee, Kwang-Sik;Han, Ji-Hee;Je, Yeon-Ho;Chang, Jin-Hee;Roh, Jong-Yul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • We have cloned cDNAs encoding toxin from the spider, Araneus ventricosus, and constructed a recombinant baculovirus expressing the insecticidal toxin. The cDNAs encoding toxin were cloned from the cDNA library of A. ventricosus. Sequence analysis of the cDNAs encoding the toxin of A. ventricosus revealed that the 240 bp cDNA for AvTox-1 and 192 bp cDNA for AvTox-2 have an open reading frame of 80 and 64 amino acid residues, respectively. The deduced protein sequence of the toxin genes of AvTox-1 and AvTox-2 was aligned to that of the snack Anemonia sulcata and scorpion Centruroides limpidus limpidus, respectively. Northern blot analysis indicated that AvTox-2 toxin gene showed a fat body-spe-cific expression pattern at the transcriptional level. Furthermore, we have explored the possibility of improving baculovirus by incorporating the A. vontricosus toxin gene into Bombyx mori nuclear polyhedrosis virus genome under the control of polyhedrin promoter, The AvTox-2 toxin gene was expressed as approximately 5.8 kDa band in the recombinant baculovirus-injected silkworm larvae. Bioassays with the recombinant virus expressing AvTox-2 on 5th instar silkworm larvae demonstrated a decrease in the time to kill $(LT_{50} days)$ compared to wild-type BmNPV-Kl $(LT_{50} 6.72 days)$ in the injection of 10 viruses. These results indicate that A. ventricosus toxin is a novel member of the spider toxin family, suggesting that the toxin gene can be used in recombinant baculoviruses to reduce insect feeding damage and increase the speed of insect kill.

Identification and Characterization of a Conserved Baculoviral Structural Protein ODVP-6E/ODV-E56 from Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Giannopoulos, Paresa N.;Guertin, Claude
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.595-603
    • /
    • 2002
  • A gene that encodes a homologue to baculoviral ODVP-6E/ODV-E56, a baculoviral envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). The ChfuGV odvp-6e/odv-e56 gene was located on an 11-kb BamHI subgenomic fragment using different sets of degenerated primers, which were designed using the results of the protein sequencing of a major 39 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1062 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 353 amino acids with a predicated molecular mass of 38.5 kDa. The amino acid sequence data that was derived from the nucleotide sequence in ChfuGV was compared to those of other baculoviruses. ChfuGV ODVP-6E/ODV-E56, along with othe baculoviral ODVP-6E/ODV-E56 proteins, all contained two putative transmembrane domains at their C-terminus. Several putative N-and O-glycosylation, N-myristoylation, and phosphorylation sites were detected in the ChfuGV ODVP-6E/ODV-E56 protein. A similar pattern was detected when a hydrophobicity-plots comparison was performed on ChfuGV ODVP-6E/ODV-E56 with other baculoviral homologue proteins. At the nucleotide level, a late promoter motif (GTAAG) was located at -14 nt upstream to the start codon of the GhfuGV odvp-6e/odv-e56 gene. a slight variant of the polyadenylation signal, AATAAT, was detected at the position +10 nt that is downstream from the termination signal. A phylogenetic tree for baculoviral ODVP-6E/ODV-E56 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV ODVP-6E/ODV-E56 is most closely related to those of Cydia pomonella granulovirus (CpGV) and Plutella xylostella granulovirus (PxGV).

Isolation and characterization of Brcpi1 gene encoding phytocystatin from chinese cabbage (Brassica rapa L.) seedlings (배추 유래 phytocystatin 유전자, Brcpi1의 분리 및 발현특성 분석)

  • Jung, Yu-Jin;Cho, Yong-Gu;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • A cDNA clone encoding phytocystatin was isolated from Brassica rapa seedlings, through rapid amplification of cDNA ends (RACE). This gene (name as Brcpi1; GenBank accession no.: EF079953) had a total length of 881 bp with an open reading frame of 609 bp, and encoded predicted polypeptide of 203 amino acid (aa) residues including a putative N-terminal signal peptide. Other relevant regions found its sequence included the G and PW conserved aa motifs, and the consensus LARFAV sequence for phytocystatins and the reactive site QVVAG. The BrCPI1 protein shared 95, 94, 81, 80 and 78% identity with other CPI proterins isolated from Brassica oleracea (BoCPI-1), Arabidopsis thaliana (AtCY SB), Glycine max (GmCPI), Oryza sativa (OsCYS-2) and Zea may (ZmCPI) at amino acid level, respectively. Southern blot analysis showed that Brcpi1 was a low copy gene. Expression pattern analysis revealed that Brcpi1 was a tissue-specific expressing gene during reproductive growth and strongly expressed at mature seedling stages. Furthermore, overexpression of Brcpi1 in transgenic Arabidopsis was enhanced tolerance to salt and cold stresses. Meanwhile the juvenile seedling of Brcpi1 transgenic plants was not affected by various concentrations ABA in MS medium. Taken together, the results showed that Brcpi1 functioned as a cysteine protease inhibitor and it exhibited a protective agent against diverse types of abiotic stress, which induced this gene in a tissue- and stress-specific manner.

A Novel Recombined Potato virus Y Isolate in China

  • Han, Shuxin;Gao, Yanling;Fan, Guoquan;Zhang, Wei;Qiu, Cailing;Zhang, Shu;Bai, Yanju;Zhang, Junhua;Spetz, Carl
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.382-392
    • /
    • 2017
  • This study reports the findings of a distinct Potato virus Y (PVY) isolate found in Northeast China. One hundred and ten samples (leaves and tubers) were collected from potato plants showing mosaic symptoms around the city of Harbin in Heilongjiang province of China. The collected tubers were planted and let to grow in a greenhouse. New potato plants generated from these tubers showed similar symptoms, except for one plant. Subsequent serological analyses revealed PVY as the causing agent of the disease. A novel PVY isolate (referred to as HLJ-C-44 in this study) was isolated from this sample showing unique mild mosaic and crisped leaf margin symptoms. The complete genome of this isolate was analyzed and determined. The results showed that HLJ-C-44 is a typical PVY isolate. Phylogenetic analysis indicated that this isolate belongs to the N-Wi strain group of PVY recombinants ($PVY^{N-Wi}$) and also shared the highest overall sequence identity (nucleotide and amino acid) with other members of this strain group. However, recombination analysis of isolate HLJ-C-44 revealed a recombination pattern that differed from that of other $PVY^{N-Wi}$ isolates. Moreover, biological assays in four different potato cultivars and in Nicotiana tabacum also revealed a different phenotypic response than that of a typical $PVY^{N-Wi}$ isolate. This data, combined, suggest that HLJ-C-44 is a novel PVY recombinant with distinct biological properties.

Comparative Analysis of Salmonella enterica subsp. enterica Serovar Thompson Isolates associated with Outbreaks Using PFGE and wgMLST

  • Youngho Koh;Yunyoung Bae;Min-Jung Lee;Yu-Si Lee;Dong-Hyun Kang;Soon Han Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1605-1614
    • /
    • 2022
  • The strains associated with foodborne Salmonella enterica Thompson outbreaks in Korea have not been identified. Therefore, we characterized S. Thompson strains isolated from chocolate cakes linked to foodborne outbreaks in Korea. A total of 56 strains were isolated from preserved cake products, products in the supply chain distribution, the manufacturer's apparatus, and egg white liquid products used for cream preparation. Subsequently, serological typing, pathogenic gene-targeted polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE), and whole-genome multi-locus sequence typing (wgMLST) were performed to characterize these isolates. The antigen formula of all isolates was 7:k:1,5, namely Salmonella enterica subsp. enterica Serovar Thompson. All 56 isolates harbored invA, his, hin, and stn, and were negative for sefA and spvC based on gene-targeted PCR analyses. Based on PFGE results, these isolates were classified into one group based on the same SP6X01.011 pattern with 100% similarity. We selected 19 strains based on the region and sample type, which were subjected to wgMLST. Although the examined strains showed 100% similarity, they were classified into seven clusters based on allelic differences. According to our findings, the cause of these outbreaks was chocolate cake manufactured with egg white liquid contaminated with the same Salmonella Thompson. Additionally, comparative analysis of wgMLST on domestic isolates of S. Thompson from the three outbreaks showed genetic similarities of over 99.6%. Based on the results, the PFGE and wgMLST combination can provide highly resolved phylogeny and reliable evidence during Salmonella outbreak investigations.

Comparison of Molecular Characterization and Antimicrobial Resistance in Carbapenem-Resistant Klebsiella pneumoniae ST307 and Non-ST307 (Carbapenem 내성 Klebsiella pneumoniae ST307과 Non-ST307의 분자 특성 및 항균제 내성 비교)

  • Hye Hyun Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.500-506
    • /
    • 2023
  • Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a worldwide public health threat. Recently, Klebsiella pneumoniae carbapenemase-2 (KPC-2)-producing sequence type (ST) 307 was identified main clone of CRKP, and dissemination of ST307 was reported in South Korea. This study examined the molecular characteristic and antimicrobial resistance pattern of 50 CRKP isolated from a tertiary hospital in Daejeon, from March 2020 to December 2021. Epidemiological relationship was analyzed by Multilocus sequence typing (MLST) and antimicrobial susceptibility test was determined using disk-diffusion method. PCR and DNA sequence analysis were performed to identify carbapenemase genes. CRKP infections were significantly more frequent in males and the patients aged ≥ 60 years. Among the 50 CRKP isolates, 46 isolates (92.0%) were multidrug-resistant (MDR), and 44 isolates (88.0%) were carbapenemase-producing K. pneumoniae (CPKP). The major carbapenemase type was KPC-2 (36 isolates, 72.0%) and New Delhi metalloenzyme-1 (NDM-1) and NDM-5 were identified in 7 isolates (14.0%) and 1 isolate (2.0%), respectively. In particular, 88.9% (32/36) of KPC-2-producing K. pneumoniae belonged to ST307, whereas 87.5% (7/8) of NDM-1,-5-producing K. pneumoniae belonged to non-ST307. These results suggest that proper infection control and effective surveillance network need to prevent not olny the spread of ST307, but also the development of non-ST307.

Muti-variable Sequence Stratigraphic Model and its Application to Shelf-Slope System of the Southwestern Ulleung Basin Margin (다중변수 순차층서 모델 개발을 통한 울릉분지 남서부 대륙주변부의 층서연구)

  • Yoon Seok Hoon;Park Se Jin;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.36-47
    • /
    • 1997
  • This study presents multi-variable sequence model for a broader application of sequence concept proposed by Exxon group. The concept of the multi-variable model is based on the fact that internal organization and boundary type of the sequences are determined by three varying factors including 3rd-order cycles of eustasy, and tectonic movement and sediment influx with 2nd-order changes. Instead of Exxon group's systems tracts, this model adopts parasequence sets as the fundamental building blocks of the sequence, because they are descriptive stratigraphic units simply defined by internal stacking pattern, reflecting interactions of accommodation and sediment influx. Seven sequence types which vary in number and type of internal parasequence sets are formulated as associations of four types of accommodation development and three grades of sediment influx. In the southwestern margin of Ulleung Basin, the multi-variable sequence analysis of shelf-slope sequence shows systematic changes in stratal patterns and the numbs, of constituent parasequence sets (i.e. sequence type). These changes are interpreted to reflect temporal and spatial changes in type and rate of tectonic movement and sediment influx, as a result of back-arc opening and closing. During the back-arc opening, rapid subsidence, continuous rise of relative sea level, and high sediment influx gave rise to sequences dominantly of single progradational parasequence set. In the early stage of back-arc closing accompanied by local contractional deformation, different types of sequences contemporaneously formed depending on the spatial changes in tectonically-controlled accommodation and influx rates. During the subsequent slow back-arc subsidence, rise-dominated relative sea-level cycle was coupled with moderate to high sedimentation rate to have resulted in sequences consisting of $2~3$ parasequence sets.

  • PDF

Differentiation of Four Major Gram-negative Foodborne Pathogenic Bacterial Genera by Using ERIC-PCR Genomic Fingerprinting (ERIC-PCR genomic fingerprinting에 의한 주요 식중독 그람 음성 세균 4속의 구별)

  • Jung, Hye-Jin;Park, Sung-Hee;Seo, Hyeon-A;Kim, Young-Joon;Cho, Joon-Il;Park, Sung-Soo;Song, Dae-Sik;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1005-1011
    • /
    • 2005
  • Widespread distributions of repetitive DNA elements in bacteria genomes are useful for analysis of genomes and should be exploited to differentiate food-borne pathogenic bacteria among and within species. Enterobacterial repetitive intergenic consensus (ERIC) sequence has been used for ERIC-PCR genomic fingerprinting to identify and differentiate bacterial strains from various environmental sources. ERIC-PCH genomic fingerprinting was applied to detect and differentiate four major Gram-negative food-borne bacterial pathogens, Esherichia coli, Salmonella, Shigella, and Vibrio. Target DNA fragments of pathogens were amplified by ERIC-PCR reactions. Dendrograms of subsequent PCR fingerprinting patterns for each strain were constructed, through which relative similarity coefficients or genetic distances between different strains were obtained numerically. Numerical comparisons revealed ERIC-PCR genotyping is effective for differentiation of strains among and within species of food-borne bacterial pathogens, showing ERIC-PCR fingerprinting methods can be utilized to differentiate isolates from outbreak and to determine their clonal relationships among outbreaks.

Molecular Cloning of a Defensin Homologue Gene of a Novel Family Member from the Firefly, Pyrocoelia rufa

  • Lee, Kwang-Sik;Park, Hye-Jin;Kim, Seong-Ryul;Lee, Sang-Mong;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 2001
  • A cDNA encoding the defensin homologue of a novel family member was isolated from the cDNA library of the firefly,Pyrocoelia rufa. Sequence analysis of the cDNA encoding the defensin homologue of P. rufa resulted that the 165 bp cDHA has an open reading frame of 55 amino acid residues. The deduced amino acid sequences of the defensin homologue gene from P. rufa showed identity to known mammalian defensins. Also 6 cystein residues in the P. rufa defensin homologue gene were conserved in the same position as those of known mammalian defensins. The result suggested that P. rufa defensin homologue is a novel member of the insect defensin family. Southern blot analysis suggests that there may be a single copy number of the P.rufa defensin homologue gene and their fat body-specific expression pattern at the transcriptional level was confirmed by Northern blot analysis.

  • PDF