• 제목/요약/키워드: Sequence optimization

검색결과 392건 처리시간 0.034초

배전계통에서 유전적 알고리즘을 이용한 접속변경순서 결정방법 (A Re-Configuration Genetic Algorithm for Distribution Systems)

  • 최대섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.381-383
    • /
    • 2004
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult to solve. Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration, and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

배전계통에서 유전적 알고리즘을 이용한 접속변경순서결정방법 (A Re-Configuration Genetic Algorithm for Distribution Systems)

  • 최대섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.418-420
    • /
    • 2005
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult In solve. Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

유전자 알고리즘을 이용한 멀티헤드 겐트리타입 칩마운터의 장착순서 최적화 (A Mount Sequence Optimization for Multihead-Gantry Chip Mounters Using Genetic Algorithm)

  • 이재영;박태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2450-2452
    • /
    • 2003
  • We present a method to increase the productivity of multihead-gantry chip mounters for PCB assembly lines. To minimize the assembly time, we generate the mount sequence using the genetic algorithm. The chromosome, fitness function, and operators are newly defined to apply the algorithm. Simulation results are presented to verified the usefulness of the method.

  • PDF

RISC 파이프라인 아키텍춰의 코드 최적화 알고리듬 (A Code Optimization Algorithm of RISC Pipelined Architecture)

  • 김은성;임인칠
    • 대한전자공학회논문지
    • /
    • 제25권8호
    • /
    • pp.937-949
    • /
    • 1988
  • This paper proposes a code optimization algorithm for dealing with hazards which are occurred in pipelined architecture due to resource dependence between executed instructions. This algorithm solves timing hazard which results from resource conflict between concurrently executing instructions, and sequencing hazard due to the delay time for branch target decision by reconstructing of instruction sequence without pipeline interlock. The reconstructed codes can be generated efficiently by considering timing hazard and sequencing hazard simultaneously. And dynamic execution time of program is improved by considering structral hazard which can be existed when pipeline is controlled dynamically.

  • PDF

Optimization Approach for a Catamaran Hull Using CAESES and STAR-CCM+

  • Yongxing, Zhang;Kim, Dong-Joon
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.272-276
    • /
    • 2020
  • This paper presents an optimization process for a catamaran hull form. The entire optimization process was managed using the CAD-CFD integration platform CAESES. The resistance of the demi-hull was simulated in calm water using the CFD solver STAR-CCM+, and an inviscid fluid model was used to reduce the computing time. The Free-Form Deformation (FFD) method was used to make local changes in the bulbous bow. For the optimization of the bulbous bow, the Non-dominated Sorting Genetic Algorithm (NSGA)-II was applied, and the optimization variables were the length, breadth, and angle between the bulbous bow and the base line. The Lackenby method was used for global variation of the bow of the hull. Nine hull forms were generated by moving the center of buoyancy while keeping the displacement constant. The optimum bow part was selected by comparing the resistance of the forms. After obtaining the optimum demi-hull, the distance between two demi-hulls was optimized. The results show that the proposed optimization sequence can be used to reduce the resistance of a catamaran in calm water.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

다단계 최적화기법을 이용한 치과용 골내 임플란트의 3차원 형상최적설계 (Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Optimization Method)

  • 한중석;김종수;최주호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.143-150
    • /
    • 2004
  • An optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.

  • PDF

기계식 주차설비의 차량 수납장치 최적설계 (Optimization of a trolley for mechanical parking systems)

  • 김명진;김권희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1992-1996
    • /
    • 2005
  • An automated mechanical parking system with a dedicated multi-floor building has been studied for improvements. Among the major components of the system, study is focused on the trolly which is the most important to the overall reliability of the system. The trolley holds and moves a parked vehicle horizontally into a specified position for the next sequence of operations. Optimization of a trolly structure is presented for strength and simplicity. With optimization, the weight has been reduced by 30% with respect to the conventional design.

  • PDF

이점 볼록 근사화 기법을 적용한 최적설계 (Design Optimization Using the Two-Point Convex Approximation)

  • 김종립;최동훈
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1041-1049
    • /
    • 2003
  • In this paper, a new local two-point approximation method which is based on the exponential intervening variable is proposed. This new algorithm, called the Two-Point Convex Approximation(TPCA), use the function and design sensitivity information from the current and previous design points of the sequential approximate optimization to generate a sequence of convex, separable subproblems. This paper describes the derivation of the parameters associated with the approximation and the numerical solution procedure. In order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve several typical design problems. These optimization results are compared with those of other optimizers. Numerical results obtained from the test examples demonstrate the effectiveness of the proposed method.

다단계 반응표면법을 이용한 치과용 임플란트의 3차원 형상최적설계 (Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization)

  • 한중석;김종수;최주호
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.940-947
    • /
    • 2004
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.