본 논문에서 다루는 문제는 품질 정보를 가지는 서열을 배치(alignment)하는 알고리즘이다. 시퀀싱(sequencing) 작업의 일부인 염기 결정 프로그램(base-calling program)에 의해서 생성되는 DNA 서열은 각 염기가 어느 정도 신뢰할 수 있는 가를 나타내는 품질 정보를 가진다. 그러나 지금까지 개발된 서열 배치 알고리즘들은 이러한 품질 정보를 고려하지 않았다. 본 논문에서는 품질 정보를 가지는 두 서열의 배치를 평가하는 기준을 제시한다. 이 평가 기준에 의한 최적의 서열 배치는 동적 프로그래밍(dynamic programming) 기법에 의해서 찾을 수 있다.
다중 서열 정렬(multiple sequence alignment, MSA)은 단백질과 핵산 서열들의 분석에 필요한 가장 중요한 도구이다. 생물학적인 서열들은 그들 사이의 유사성과 차이점을 보여주기 위하여 각각의 서열들을 수직적으로 정렬한다. 본 논문에서는 클러스터링 분기를 이용하여 두 그룹의 서열들 사이에서 정렬을 수행하는 효율적인 그룹 정렬 방법을 제안하였다. 제안한 알고리즘(Multiple Sequence Alignment using Clustering Divergence : CDMS)은 하향식 발견 방법인 트리 형태의 병합을 위해 클러스터링 방법으로 구축하였다. 클러스터링 방법은 가장 긴 거리를 가지는 서열을 두 개의 클러스터로 나눌 수 있다는 것에 기초하였다. 제안한 새로운 서열 정렬 알고리즘은 기존의 Clustal W알고리즘 보다 질적 향상과 처리 시간 단축 O($n^{3} L^{2}$)이 기대된다.
서열 정렬에 있어서 전체를 비교하여 두 서열 사이의 최대의 유사성 또는 상동성을 찾는 전역 정렬은 넓은 범위를 선호하게 되는 편향성을 갖게 된다. 비일치 부분을 과감히 제거하고 높은 일치도를 갖는 부분 영역을 정렬하게 되면 정렬점수를 높이는 효과를 갖게 된다. 여러 개의 부분 지역 정렬을 탐색하게 하는 다중 지역정렬 방법을 적용하여 다수의 지역정렬을 수행하는 알고리즘을 구현하고 결과를 분석해 본다. 지역 정렬에 일반적으로 사용되는 Smith-Waterman 알고리즘의 제한점 중 하나인 서열이 길어지는 것을 방지하고, sub-optimal sequence를 찾기 위한 방법을 응용하여 다중지역 정렬을 수행한다.
Kim, Jin;Hwang, Jae-Joon;Kim, Dong-Hoi;Saangyong Uhmn
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.264-267
/
2003
Multiple sequence alignment is a useful tool to identify the relationships among protein sequences. Dynamic programming is the most widely used algorithm to obtain multiple sequence alignment with optimal cost. However dynamic programming cannot be applied to certain cost function due its drawback and to produce optimal multiple sequence alignment. We proposed sub-alignment refinement algorithm to overcome the problem of dynamic programming and impelmented this algorithm as a module of our MS Windows-based sequence alignment program.
분자 생물학(computational molecular biology) 분야에서 DNA 염기 서열 배치 알고리즘은 다양한 방법으로 개선되어 왔다. 본 논문에서는 기존의 DNA 염기의 품질 정보(quality information)를 이용한 DNA 염기 서열 배치 방법을 개선하기 위하여 퍼지 논리 시스템(fuzzy logic system)과 DNA 염기 서열 단편의 특징을 적용한 품질 정보와 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘을 제안한다. 기존의 알고리즘은 Needleman-Wunsch가 제안한 전역 배치 알고리즘에 각 DNA 염기의 품질 정보를 적용하여 DNA 염기 서열 배치 점수를 계산하였다. 그러나 전체 DNA 염기의 품질 정보를 이용하여 계산하기 때문에 DNA 염기 말단 부분의 품질이 낮은 경우에는 DNA 염기 서열 배치 점수를 계산하는 과정에서 오차가 발생한다. 본 논문에서는 기존의 품질 정보를 이용한 알고리즘을 개선하여 DNA 염기 서열의 말단 부위의 품질이 낮은 경우에도 정확히 서열을 배치할 수 있도록 한다. 또한 DNA 염기 서열 단편의 길이와 낮은 품질의 DNA 염기 빈도를 퍼지 논리 시스템에 적용하여 DNA 염기 서열 배치 점수를 계산하는데 적용되는 매핑 점수 인자(parameter)를 동적으로 조정한다. 제안된 알고리즘의 성능 평가를 위해 NCBI(National Center for Biotechnology Information)의 실체 유전체 데이터를 받아 성능을 분석한 결과, 제안된 알고리즘이 기존의 품질 정보만을 이용한 알고리즘 보다 DNA 염기 서열 배치에 있어서 효율적임을 확인하였다.
단백질들의 복수서열정렬은 단백질 서열간의 관계를 유추할 수 있는 유용한 도구이다. 최적화된 복수서열정렬을 얻기 위해 사용되는 가장 유용한 방법은 dynamic programming이다. 그러나 dynamic programming은 특정한 비용함수를 사용할 수 없기 때문에 특별한 경우 최소의 비용을 가지는 복수서열 정렬을 제공하지 못하는 문제점이 있다. 우리는 이러한 문제점을 해결하기 위하여 부분서열정렬 개선기법을 사용한 알고리즘을 제안하였으며, 이 알고리즘이 dynamic programming의 문제점을 효과적으로 해결함을 보였다.
3개 이상의 DNA 혹은 단백질의 염기서열을 정렬하는 복수 염기서열 정렬은 염기서열들 사이의 진화관계, gene regulation, 단백질의 구조와 기능에 관한 연구에 필수적인 도구이다. 복수 염기서열 정렬을 얻기 위한 기존의 방법은 progressive pairwise alignment 와같이 빠른 실행시간 내에 만족할 만한 복수 염기서열 정렬을 제공하는 방법과, 최적의 복수 여기서열 정렬을 제공하나 실행시간이 상대적으로 긴 dynamic programming 과 같은 방법 등이 있다. 본 논문에서는 진화 알고리즘을 사용하여 기존의 방법에서 제공하는 복수 염기서열 정렬을 짧은 시간내에보다 개선된 복수 염기서열 정렬을 획득하게 하는 방법을 제시하였으며, 진화 알고리즘의 구성내용을 설명하였으며, 실제의 염기서열을 사용하여 이 방법의 장점을 보였다.
현재 가장 많이 사용되는 단백질 구조 예측 방법은 비교 모델링 (comparative modeling) 방법이다. 비교 모델링 방법에서의 정확도를 높이기 위해서는 alignment의 정확도 역시 매우 필수적으로 필요하다. 비교 모델링 과정 중의 fold-recognition 단계에서 alignment의 정확도에 의해 template을 고르는 방법은 단지 가장 비슷한 template을 선택하는 방법에 비해 주목을 받지 못하고 있다. 최근에는 두 가지의 alignment에 사이의 shift 정보를 바탕으로 한 shift score라는 수치가 alignment의 성능을 표현하기 위해서 개발되었다. 우리는 더 정확한 구조 예측의 첫걸음이 될 수 있는 shift score를 예측하는 방법을 개발하였다. Shift score를 예측하기 위해 support vector regression (SVR)이 사용되었다. 사전에 구축된 라이브러리 안의 길이가 n 인 template과 구조를 알고 싶은 query 단백질 사이의 alignment는 n+2 차원의 input 벡터로 변환된다. Structural alignment가 가장 좋은 alignment로 가정되었고 SVR은 query 단백질과 template 단백질의 structural alignment과 profile-profile alignment 사이의 shift score를 예측하도록 training 되었다. 예측 정확도는 Pearson 상관계수로 측정되었다. Training 된 SVR은 실제의 shift score와 예측된 shift score 사이에 0.80의 Pearson 상관계수를 갖는 정도로 예측하였다.
Bioinformatics education can be defined as the teaching and learning of how to use software tools, along with mathematical and statistical analysis, to solve biological problems. Although many resources are available, most students still struggle to understand even the simplest sequence alignment algorithms. Applying visualizations to these topics benefits both lecturers and students. Unfortunately, educational software for visualizing step-by-step processes in the user experience of sequence alignment algorithms is rare. In this article, an educational visualization tool for biological sequence alignment is presented, and the source code is released in order to encourage the collaborative power of open-source software, with the expectation of further contributions from the community in the future. Two different modules are integrated to enable a student to investigate the characteristics of alignment algorithms.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4814-4832
/
2019
Plagiarism detection is increasingly exploiting text alignment. Text alignment involves extracting the plagiarism passages in a pair of the suspicious document and its source document. The heuristics have achieved excellent performance in text alignment. However, the further improvements of the heuristic methods mainly depends more on the experiences of experts, which makes the heuristics lack of the abilities for continuous improvements. To address this problem, machine learning maybe a proper way. Considering the position relations and the context of text segments pairs, we formalize the text alignment task as a problem of sequence labeling, improving the current methods at the model level. Especially, this paper proposes to use the probabilistic graphical model to tag the observed sequence of pairs of text segments. Hence we present the sequence labeling approach for text alignment in plagiarism detection based on Conditional Random Fields. The proposed approach is evaluated on the PAN@CLEF 2012 artificial high obfuscation plagiarism corpus and the simulated paraphrase plagiarism corpus, and compared with the methods achieved the best performance in PAN@CLEF 2012, 2013 and 2014. Experimental results demonstrate that the proposed approach significantly outperforms the state of the art methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.