• Title/Summary/Keyword: Sepic/Zeta

Search Result 9, Processing Time 0.024 seconds

Non-isolated Bidirectional Soft-switching SEPIC/ZETA Converter with Reduced Ripple Currents

  • Song, Min-Sup;Son, Young-Dong;Lee, Kwang-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.649-660
    • /
    • 2014
  • A novel non-isolated bidirectional soft-switching SEPIC/ZETA converter with reduced ripple currents is proposed and characterized in this study. Two auxiliary switches and an inductor are added to the original bidirectional SEPIC/ZETA components to form a new direct power delivery path between input and output. The proposed converter can be operated in the forward SEPIC and reverse ZETA modes with reduced ripple currents and increased voltage gains attributed to the optimized selection of duty ratios. All switches in the proposed converter can be operated at zero-current-switching turn-on and/or turn-off through soft current commutation. Therefore, the switching and conduction losses of the proposed converter are considerably reduced compared with those of conventional bidirectional SEPIC/ZETA converters. The operation principles and characteristics of the proposed converter are analyzed in detail and verified by the simulation and experimental results.

A New Single-power-conversion SEPIC-ZETA Isolated Bidirectional Converter (새로운 단일전력변환 SEPIC-ZETA 절연형 양방향 컨버터)

  • Kim, Jun-Seok;Cha, Woo-Jun;Kwon, Bong-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.165-166
    • /
    • 2015
  • 본 논문은 새로운 단일전력변환 SEPIC(Single-Ended Primary-Inductor Converter)-ZETA 절연형 양방향 컨버터를 제안한다. 제안된 컨버터는 SEPIC과 ZETA 컨버터가 결합된 구조로 절연을 통해 안정성을 강화했고, DC측 리플 전류가 낮아 에너지 저장장치의 수명을 연장시킨다. 그리고 SEPIC 컨버터 모드(DC/AC)와 ZETA 컨버터 모드(AC/DC)에서의 입출력 전압비가 동일해 양방향 제어 알고리즘이 간단하다. 또한, 기존 two-stage 구성의 양방향 컨버터와 달리 회로가 단순하며, 단일전력변환을 통한 고효율 저비용의 장점을 가지고 있다. 본 논문에서는 이론적 해석 및 제안한 컨버터의 250W급 시작품을 이용한 실험결과를 통해 컨버터의 우수성 및 성능을 검증한다.

  • PDF

New Bidirectional ZVS PWM Sepic/Zeta DC-DC Converter (새로운 양방향 ZVS PWM Sepic/Zeta DC-DC 컨버터)

  • Kim, In-Dong;Paeng, Seong-Hwan;Park, Sung-Dae;Nho, Eui-Cheol;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.301-310
    • /
    • 2007
  • Bidirectional DC-DC converters allow transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, Dey are being increasingly used in many applications such as battery charge/dischargers, do uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This Paper Proposes a new bidirectional Sepic/Zeta converter. It has low switching loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system. The proposed converter also has both transformer-less version and transformer one.

New Bidirectional ZVS PWM SEPIC/ZETA Converter (새로운 양방향 ZVS PWM SEPIC/ZETA 컨버터)

  • Park, Sung-Dea;Paeng, Seong-Hwan;Kim, In-Dong;Nho, Eui-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.933-934
    • /
    • 2006
  • 본 논문에서는 새로운 양방향 ZVS PWM Sepic/Zeta 컨버터를 제안한다. 제안한 컨버터는 PWM 제어가능한 컨버터로서 입력과 출력전압의 극성이 같은 비반전 컨버터의 특징을 지니며 DC 전압의 전달함수가 양방향 모두 M=D/(1-D)로 동일하다. 또한 각방향으로 전력전달시 다이오드와 병렬로 연결된 MOSFET가 다이오드의 'ON'시 동시에 'ON'되어 Sychronous Rectifier로 동작하므로 도통손을 저감하였으며, Auxiliary Resonant Commutated Pole를 사용하여 저감된 스위칭 손실을 갖는 특성을 지니고 있다. 또한 Transformer 버전이 존재하므로 입력과 출력사잉에 전기적 절연을 필요로 하는 실제응용에 유용하게 사용할 수 있다.

  • PDF

Bidirectional ZVS PWM Sepic/Zeta Converter with Low Conduction Loss and Low Switching Loss (저스위칭손실 및 저도통손을 갖는 양방향 ZVS PWM Sepic/Zeta 컨버터)

  • Paeng, S.H.;Lee, B.C.;Choi, S.H.;Kim, I.D.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.549-551
    • /
    • 2005
  • Bidirectional DC/DC converters allows transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, they are being increasingly used in many applications such as battery charger/dischargers, dc uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This paper proposes a new bidirectional Sepic/zeta converter. It has low swicthing loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively. Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system . The proposed converter also has both transformerless version and transformer one.

  • PDF

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • This paper addresses several issues concerning the analysis, design, modeling, simulation and development of single-phase, single-switch, power factor corrected AC-DC high frequency switching converter topologies with transformer isolation. A detailed analysis and design is presented for single-switch topologies, namely forward buck, flyback, Cuk, Sepic and Zeta buck-boost converters, with high frequency isolation for discontinuous conduction modes (DCM) of operation. With an awareness of modem design trends towards improved performance, these switching converters are designed for low power rating and low output voltage, typically 20.25W with 13.5V in DCM operation. Laboratory prototypes of the proposed single-switch converters in DCM operation are developed and test results are presented to validate the proposed design and developed model of the system.

A Generalization of High Frequency Converter with Lossless Snubber Cell (무손실 스너버 셀을 갖는 고주파 컨버터의 일반화)

  • Joung Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.478-484
    • /
    • 2004
  • In this paper, two lossless snubber cells are proposed to generalize high frequency converter with losslless snubber. The selecting of snubber cells, which generalize high frequency converters, are depended on converter topologies. The cells have a saturable inductor, LC resonant tank and two diodes. In the cells, the saturable inductors extremely reduce resonant energy in the LC resonant tank. By minimizing resonant energy, the converter, which applies snubber cells, can operate at high frequency. These cells are applied for Buck, Boost, Buck-Boost, Cuk, ZETA, and SEPIC to generalize converter which have lossless snubber. The boost type converter has been implemented, with 400 kHz switching frequency for 125 W load to verify the converter characteristics.

A New Family of Non-Isolated Zero-Current Transition PWM Converters

  • Yazdani, Mohammad Rouhollah;Dust, Mohammad Pahlavan;Hemmati, Poorya
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1669-1677
    • /
    • 2016
  • A new auxiliary circuit for boost, buck, buck-boost, Cuk, SEPIC, and zeta converters is introduced to provide soft switching for pulse-width modulation converters. In the aforementioned family of DC-DC converters, the main and auxiliary switches turn on under zero current transition (ZCT) and turn off with zero voltage and current transition (ZVZCT). All diodes commutate under soft switching conditions. On the basis of the proposed converter family, the boost topology is analyzed, and its operating modes are presented. The validity of the theoretical analysis is justified by the experimental results of a 100W, 100 kHz prototype. The conducted electromagnetic emissions of the proposed boost converter are measured and found to be lower than those of another ZCT boost converter.

Performance Investigation of Buck-Boost Type DC-DC Converters for LED Drive Application (LED Driver를 위한 승강압용 DC-DC 컨버터의 특성 비교)

  • Kim, Tae-Sik;Kwak, Sang-Shin;Cho, Nae-Soo;Kim, Woo-Hyun;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.171-173
    • /
    • 2009
  • 최근 LED 기술의 발달로 LED의 이용범위가 점차 넓어지고 있다. 이러한 LED를 구동하기 위한 시스템의 저비용 고효율을 위해서는 입력전압에 대한 출력전압의 승강압이 중요하다. 따라서 본 논문에서는 승강압이 가능한 DC-DC 컨버터인 Buck-Boost, ZETA, SEPIC 토폴로지를 적용하여 LED Lamp 구동 시스템을 구성해 본다. 위 세 가지의 컨버터는 입력전압에 대하여 출력전압의 승강압이 가능하고 입출력 전압특성이 동일하다. 그러므로 각각의 컨버터들을 이용하여 LED driving 회로를 구성하고, Pspice 시뮬레이션을 통해 나타나는 입출력 효율을 측정하여 승강압용 DC-DC 컨버터의 특성을 비교한다.

  • PDF