• Title/Summary/Keyword: Separation technique

Search Result 811, Processing Time 0.029 seconds

Comparison Between a Swim Up after Sperm Washing and a Percoll Gradient Technique for Intrauterine Insemination Outcome (정자 세척후 SWIM-UP 처치와 Percoll정자 처리방법의 자궁강내 인공수정술 후 임신 성공예후에 대한 비교 관찰)

  • Park, Hyun-Jue;Park, Hyun-Jeong;Lee, Yu-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • From September 1988 to August 1992, two different methods of preparing human sperm before intrauterine insemination(IUI) were compared using the semen samples of seventy-three infertile couples. The sperms were prepared by a swim-up after sperm washing or by a continuous percoll gradient technique. Fourteen of 35 women conceived during IUI cycles using a sperm washing and swim-up method (40%), and 12 of 38 women conceived during IUI cycles using a percoll gradient technique(31.6%). Among the group with male infertile etiologic factor only, one of 5 women conceived during sperm washing and swim-up cycles(20%); one of 4 women conceived during percoll gradient cycles(25%). On the contrary, among the group with cervical factor only, six of 10 women conceived during sperm washing and swim-up cycles (60%) ; Five of 17 women conceived during percoll gradient cycles(29.4%). It is suggested that sperm separation by sperm washing ar -up is a useful technique for intrauterine insemination in cervical infertility, and sperm separation in percoll gradient appears to be more valuable for intrauterine insemination of male subfertility.

  • PDF

Interference Mitigation Technique for the Sharing between IMT-Advanced and Fixed Satellite Service

  • Lim, Jae-Woo;Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 2007
  • In this paper, we propose an efficient and robust interference mitigation technique based on a nullsteering multi-user multiple-input multiple-output (MU-MIMO) spatial division multiple access (SDMA) scheme for frequency sharing between IMT-advanced and fixed satellite service (FSS) in the 3400-4200 and 4500-4800 MHz bands. In the proposed scheme, the pre-existing precoding matrix for SDMA unitary precoded (UPC) MIMO proposed by the authors is modified to construct nulls in the spatial spectrum corresponding to the direction angles of the victim FSS earth station (ES). Furthermore, a numerical formula to calculate the power of the interference signal received at the FSS ES when IMT-Advanced base stations (BS) are operated with the interference mitigation technique is presented. This formula can be derived in closed form and is simply implemented with the help of simulation, resulting in significantly reduced time to obtain the solution. Finally, the frequency sharing results are analyzed in the co-channel and adjacent channel with respect to minimum separation distance and direction of FSS earth station (DOE). Simulation results indicate that the proposed mitigation scheme is highly efficient in terms of reducing the separation distance as well as robust against DOE estimation errors.

Estimation and Assessment of Future Design Rainfall from Non-stationary Rainfall Frequency Analysis using Separation Method (호우분리기법을 적용한 비정상성 빈도해석의 미래확률강우량 산정 및 평가)

  • Son, Chan-Young;Lee, Bo-Ram;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.451-461
    • /
    • 2015
  • This study aimed to estimate the future design rainfall through a non-stationary frequency analysis using the rainfall separation technique. First, we classified rainfall in the Korean Peninsula into local downpour and TC-induced rainfall through rainfall separation technique based on the path and size of a typhoon. Furthermore, we performed the analysis of regional rainfall characteristics and trends. In addition, we estimated the future design rainfall through a non-stationary frequency analysis using Gumbel distribution and carried out its quantitative comparison and evaluation. The results of the analysis suggest that the increase and decrease rate of rainfall in the Korean Peninsula were different and the increasing and decreasing tendencies were mutually contradictory at some points. In addition, a non-stationary frequency analysis was carried out by using the rainfall separation technique. The outcome of this analysis suggests that a relatively reasonable future design rainfall can be estimated. Comparing total rainfall with the future design rainfall, differences were found in the southern and eastern regions of the Korean peninsula. This means that climate change may have a different effect on the typhoon and local downpour. Thus, in the future, individual assessment of climate change impacts needs to be done through moisture separation. The results presented here are applicable in future hydraulic structures design, flood control measures related to climate change, and policy establishment.

Spectrum Sensing for Cognitive Radio Networks Based on Blind Source Separation

  • Ivrigh, Siavash Sadeghi;Sadough, Seyed Mohammad-Sajad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.613-631
    • /
    • 2013
  • Cognitive radio (CR) is proposed as a key solution to improve spectral efficiency and overcome the spectrum scarcity. Spectrum sensing is an important task in each CR system with the aim of identifying the spectrum holes and using them for secondary user's (SU) communications. Several conventional methods for spectrum sensing have been proposed such as energy detection, matched filter detection, etc. However, the main limitation of these classical methods is that the CR network is not able to communicate with its own base station during the spectrum sensing period and thus a fraction of the available primary frame cannot be exploited for data transmission. The other limitation in conventional methods is that the SU data frames should be synchronized with the primary network data frames. To overcome the above limitations, here, we propose a spectrum sensing technique based on blind source separation (BSS) that does not need time synchronization between the primary network and the CR. Moreover, by using the proposed technique, the SU can maintain its transmission with the base station even during spectrum sensing and thus higher rates are achieved by the CR network. Simulation results indicate that the proposed method outperforms the accuracy of conventional BSS-based spectrum sensing techniques.

Rapid Separation of Cellular Cyclosophoraoses Produced by Rhizobium Species

  • Seo, Dong-Hyuk;Lee, Sang-Hoo;Park, Hey-Lin;Kwon, Tae-Jong;Jung, Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.522-525
    • /
    • 2002
  • A very rapid and efficient separation technique for cellular rhizobial cyclosophoraoses was developed based on fractional precipitation and partition chromatography. Cyclosophoraoses are known to function in the osmotic regulation and root nodule formation of legumes during the nitrogen fixation process. Cyclosophoraoses are produced as unbranched cyclic (1longrightarrow12)-${\beta}$-D-glucans in Agrobacterium or Rhizobium species. Recent research has shown that cyclosophoraoses can form inclusion complexation with various unstable or insoluble guest chemicals, thereby implying great potential for industrial application. Typical separation of pure cellular cyclosophoraoses has been so far carried out by several time-consuming steps, including size exclusion, anion exchange, and desalting liquid chromatographies, with a relatively poor recovery. However, the proposed method demonstrated that the successive application of fractional ethanol precipitation and one step of silica gel-based flash column chromatography was enough to simultaneously purify neutral or anionic forms of cyclosophoraoses. This novel technique is very rapid and provides a high recovery.

Numerical Simulation of Airframe Separation of a Missile System Using an Unstructured Overset Mesh Technique (비정렬 중첩격자기법을 이용한 유도무기의 기체분리운동 모사)

  • Jeong, Mun-Seung;Lee, Sang-Uk;Gwon, O-Jun;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.19-29
    • /
    • 2006
  • In this study, numerical simulation of airframes separating from a missile system has been preformed. For the time-accurate trajectory simulation, six D.O.F equations of motion of multiply connected bodies were derived and these equations have been coupled with the unstructured overset mesh technique for the treatment of independent mesh blocks moving with each body component. Applications were made for the simulation of the airframe separation at missile angles of attack of 0 and 5 degrees. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

A Study for Separation of $CH_4$ and $CO_2$ from Biogas (바이오가스의 $CH_4$, $CO_2$의 분리방법 연구)

  • Lee, Taek-Hong;Kim, Jae-Young;Chang, Sae-Hun;Lee, Hyo-Suk;Choi, Ik-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2010
  • This paper is studying the selective separation of methane and carbon dioxide which are the main ingredients of biogas. Adsorption performance of molecular sieve 13x for carbon dioxide seems to be reasonable. In this experiments carbon dioxide contains about 3~5 ppm of methane and it is impossible to obtain high purity carbon dioxide. Applying the low temperature technique, it is possible to separate methane and carbon dioxide from bio gas. PRO II simulation shows results a small change of liquefaction temperatures and no difference with the used thermodynamic models. Applying low temperature technique, It is possible to separate carbon dioxide and methane from biogas.

On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation (이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동)

  • 전명석;김영목;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

Development of Recycling Technique of Mill Reject Produce using Ttiboelectrostatic Separation (마찰하전형정전선별법을 이용한 Mill Reject 산물 재활용 기술개발)

  • 전호석;한오형;신선명;윤로한
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.20-27
    • /
    • 2002
  • This study was to develop the triboelectrostatic separation technique to recycle the coal from about 20% of mill reject products remained by grinding process in the coal thermoelectric power plant. In this study, we get a test results that can product the cleaned coal of 15% ash content and 66.23% recovery from mill reject of 47% ash content. And then, from the result of the releases analysis, we proved the excellence of treatment method, after showing the treament processing which is able to get 80% of recovery of coal from 20% of ash content demanded in the power plant.

Preparation of Porous Glass Membranes by the Phase-Separation Technique (상분리법에 의한 다공질 유리막의 제조)

  • 현상훈;최봉호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.59-65
    • /
    • 1988
  • To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.

  • PDF