• Title/Summary/Keyword: Separation Flow Angle

Search Result 239, Processing Time 0.022 seconds

A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection (2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구)

  • Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

A Study on the Flow Characteristics of Oil-Water Separator for Marine Ship CFD (CFD에 의한 선박용 유수분리기의 유동특성에 관한 연구)

  • Kim, Byeong Jun;Kim, Sung Yoon;Roh, Chun Su;Lee, Young Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.48-53
    • /
    • 2016
  • The centrifugal separator which uses gravity separation method for oil-water separation, rotating at high-speed, is one of the most commonly used device for controlling the amount of the oil in waste water collected in bilge. The IMO (International Maritime Organization) has set regulations, also known as MARPOL 73/78, for the prevention of marine pollution. In addition, DET NORSKE VERITAS (DNV) has set standards regarding the assignment of Environmental Class Notation, CLEAN or CLEAN DESIGN, of ships. One of the requirements for classification is that in addition to conforming to MARPOL 73/78, more stringent measures must be taken as well. One of these measures is to limit the oil concentration in bilge water to less than 5ppm. So in this study, an Oil-Water Separator (OWS) is used together with multiple separating plates as a filtration system to be used as an oil-water separation device. The OWS operates using centrifugal separation in which the mixture is separated by centrifugal forces. The main purpose of this paper is to present the OWS separation efficiency according to the rotation speed, mass-flow rate, the angle and the number of stacked layers of the laminated plate using Computational Fluid Dynamics (CFD). Improvements to the device will be investigated from these results.

Experimental Study of Heat Transfer Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 열전달특성에 관한 실험적 연구)

  • 전창덕;홍주태;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.120-139
    • /
    • 1996
  • Experiment was performed to study the heat transfer characteristics in 27 kinds of 15 : 1 scale models of multi-louverred fin heat exchangers with a wide range of variables(R $e_{Lp}$ =100~1, 800, $L_p$/F$p$=0.3~0.9, $\theta$=20$^{\circ}$~40$^{\circ}$). Thermofoil heaters were used to heat the louver fins and the local average Nusselt number for each louver in the louver array was obtained at constant wall temperature conditions. Correlations are developed to predict the heat transfer characteristics and drag coefficients. Generally, the heat transfer characteristics in the multi-louvered fins is shown to be similar to those of the laminar heat transfer on a flat plate. As the Reynolds number, the louver pitch to fin pitch ratio$L_p$/F$p$and the louver angle($\theta$) increase respectively, the average Nusselt number increases, but the variation of average Nusselt number as a function of the louver angle is smaller than that as a function of the louver pitch to fin pitch ratio. In case of$L_p$/F$p$ <0.5, the average Nusselt number of the 3rd louver is especially lower than the others, it is expected that it is due to the flow structure such as a recirculation flow and a flow separation.

  • PDF

Research on Improvement of Performance of Anemometer Using PTC Thermistor (PTC 서미스터를 이용한 유속계의 성능향상에 관한 연구)

  • Yoon, Joon-Yong;Cho, Nahm-Gyoo;Kim, Jin-Rae;Sung, Nak-Won;Kim, Hwang-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.15-21
    • /
    • 2000
  • An anemometer employing the bulk PTC thermistor as the sensing element is investigated in this study. The numerical and experimental works are carried out to improve the sensitivity problem of the element by focusing fluid dynamics point of view. The typical shape of the sensing element has been used as a rectangular type, but this shape has a sensitivity problem because of flow separations on the sharp edge when the flow direction is different from that of the sensing element. In order to reduce the reading error, the installer has to be very careful about the flow direction. The reading error fluctuation by time as well as the sensitivity problem can be improved considerably through this study. It can be concluded that the small change of the sensor shape can improve the performance of the flow sensor.

  • PDF

A Study on Pressure Distributions in a Centrifugal Compressor Channel Diffuser (원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Gang, Jeong-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.507-513
    • /
    • 2001
  • Time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates are investigated. Pressure distributions from the impeller exit to the channel diffuser exit are measured for various flow rates from choke to near surge condition, and the effects of operating condition are discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

A Study on the Pressure Distribution in the Centrifugal Compressor Channel Diffuser at Design and Off-Design Conditions (설계 및 탈설계점에서의 원심압축기 채널디퓨저 내부의 압력분포에 관한 연구)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.548-554
    • /
    • 2000
  • The aim of this paper is to understand the time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed far various flow rates from choke to near surge condition, and the effect of operating condition is discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

  • PDF

Effective Heat Transfer Using Large Scale Vortices (대와류를 이용한 채널 내 열전달 증진)

  • Yoon, Dong-Hyeog;Choi, Choon-Bum;Lee, Kyong-Jun;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.198-206
    • /
    • 2008
  • A numerical study has been carried out to investigate heat transfer enhancement in channel flow using large-scale vortices. A square cylinder, inclined with respect to the main flow direction, is located at the center of the channel flow, generating a separation region and Karman vortices. Two cases are considered; one with a fixed blockage ratio and the other one with a fixed cylinder size. In both cases, the flow characteristics downstream of the cylinder significantly change depending on the inclination angle. As a result, heat transfer from channel wall is significantly enhanced due to increased vertical-velocity fluctuations induced by the large-scale vortices shed from the cylinder. Quantitative results as well as qualitative physical explanation are presented to justify the effectiveness of the inclined square cylinder as a vortex generator to enhance heat transfer from channel wall.

A model of roof-top surface pressures produced by conical vortices : Model development

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2001
  • The objective of this study is to understand the flow above the front edge of low-rise building roofs. The greatest suction on the building is known to occur at this location as a result of the formation of conical vortices in the separated flow zone. It is expected that the relationship between this suction and upstream flow conditions can be better understood through the analysis of the vortex flow mechanism. Experimental measurements were used, along with predictions from numerical simulations of delta wing vortex flows, to develop a model of the pressure field within and beneath the conical vortex. The model accounts for the change in vortex suction with wind angle, and includes a parameter indicating the strength of the vortex. The model can be applied to both mean and time dependent surface pressures, and is validated in a companion paper.

Experimental Investigation on the Gap Cavitation of Semi-spade Rudder (Semi-spade 타의 간극 캐비테이션에 대한 실험적 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Ahn, Jong-Woo;Kim, Yong-Soo;Kim, Sung-Pyo;Park, Je-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.422-430
    • /
    • 2006
  • The horn and movable parts around the gap of the conventional semi-spade rudder are visualized by high speed CCD camera with the frame rate of 4000 fps (frame per second) to study the unsteady cavity pattern on the rudder surface and gap. In addition, the pressure measurements are conducted on the rudder surface and inside the gap to find out the characteristics of the flow behavior. The rudder without propeller wake is tested at the range of $1.0{\leq}{\sigma}_v\;1.6$ and at the rudder deflection angle of $-8{\leq}{\theta}{\leq}10^{\circ}$. The time resolved cavity images are captured and show strong cavitation around the rudder gap in all deflection angles. As the deflection angle gets larger, the flow separated from the horn surface increases the strength of cavitation. The accelerated flow along the horn decreases its pressure and the separated flow from the horn increases the pressure abruptly. The pressure distribution inside the gap reveals the flow moving from the pressure to suction side. In the negative deflection angle, the turning area on the movable part initiates the flow separation and cavitation on it.