• Title/Summary/Keyword: Separation Configurations

Search Result 61, Processing Time 0.026 seconds

An Investigation on Separation Configurations in Compressor Cascades with Boundary Layer Suction(BLS)

  • Zhang, Hualiang;Tan, Chunqing;Zhang, Dongyang;Wang, Songtao;Wang, Zhongqi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.143-149
    • /
    • 2008
  • A numerical study was performed for a vane of a compressor with a high-turning angle and meridional divergence. At first, the effect of the suction position was discussed. Then, the optimal suction position was applied to the cascades with the aspect ratio of 2.53 and 0.3, respectively, to get the knowledge of the effect of the endwall boundary layer removal on the secondary flow along the blade height. At last, using the critical principles of the three-dimensional separation, the topological structures of the flow patterns of the body surfaces and the separation configurations were discussed in detail. The results show that the largest reduction of the total loss can be achieved when the suction slot is near the suction side. The topological structure as well as the separation configuration varies due to boundary layer removal, which restrains the flow separation at the corner and delays or depresses the separation on the suction surface. Compared with the original cascade, the cascade with the endwall boundary layer removal has a higher blade loading along the most span. Furthermore the flow loss decreases and distributes uniformly along the span.

  • PDF

FLOW SEPARATION PREDICTION ON TRANSONIC AIRCRAFT USING VARIOUS TURBULENCE MODELS (다양한 난류 모델을 이용한 천음속 항공기에서의 흐름 박리 예측)

  • Lee, Nam-Hun;Kwak, Ein-Keun;Lee, Seung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.420-427
    • /
    • 2011
  • In this study, numerical simulations of transonic aircraft configurations are performed with various turbulence models and the effect of turbulence models on flow separation are examined. A three-dimensional RANS code and three turbulence models are used for the study. The turbulence models incorporated to the code include Menter's ${\kappa}-{\omega}$ model, Coakley's $q-{\omega}$, and Huang and Coakley's ${\kappa}-{\omega}$, model. Using the code, numerical simulations of DLR-F6 configurations obtained from AIAA CFD Drag Prediction Workshop are conducted. Flow separations on the wing-body juncture and the wing lower surface near pylon are observed. and flow features of the regions are compared with experimental data and other numerical results.

  • PDF

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

Stability of the Grain Configurations of Thin Films-a Model for Agglomeration (박막내 결정립 배열의 열적 불안정성1)-응집 모델)

  • Na, Jong-Ju;Park, Jung-Geun
    • 연구논문집
    • /
    • s.27
    • /
    • pp.183-200
    • /
    • 1997
  • We have calculated the energy of three distinct grain configurations, namely completely connected, partially connected and unconnected configurations, evolving during a spheroidization of polycrystalline thin film by extending a geometrical model due to Miller et al. to the case of spheroidization at both the surface and film-substrate interface. "Stabilitl" diagram defining a stable region of each grain configuration has been established in terms of the ratio of grain size to film thickness vs. equilibrium wetting or dihedral angles at various interface energy conditions. The occurrence of spheroidization at the film-substrate interface significantly enlarges the stable region of unconnected grain configuration thereby greatly facilitating the occurrence of agglomeration. Complete separation of grain boundary is increasingly difficult with a reduction of equilibrium wetting angle. The condition for the occurrence of agglomeration differs depending on the equilibrium wetting or dihedral angles. The agglomeration occurs, at low equilibrium angles, via partially connected configuration containing stable holes centered at grain boundary vertices, whereas it occurs directly via completely connected configuration at large equilibrium angles except for the case having small surface and/or film-substrate interface energy. The initiation condition of agglomeration is defined by the equilibrium boundary condition between the partially connected and unconnected configurations for the former case, whereas it can, for the latter case, largely deviate from the equilibrium boundary condition between the completely connected and unconnected configurations because of the presence of a finite energy barrier to overcome to reach the unconnected grain configuration.

  • PDF

INFLUENCE OF ROLLING LOADS BY CASTERS ON SEPARATION RESISTANCE OF SUBSTRATE CONCRETE AND SYNTHETIC RESIN FLOOR COATINGS (下地コンクリ-トと合成樹脂塗り床材の耐剝離性に及ぼす キャスタ一の走行荷重の影響)

  • Takamasa, Mikami;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.73-78
    • /
    • 2003
  • In this Study, we examined the influence of characteristics of rolling loads by casters on separation resistance of substrate concrete and synthetic resin floor coating. In the experiment, we first prepared floor samples having substrate concrete of various compressive strength, surface hardness and surface configurations, then put the coated samples to the test of separation resistance with Rolling Caster Loading Machine. Three loading conditions consisted of different kinds of casters, rolling conditions, and coating materials. Consequently, we clarified that the grade of separation resistance varied widely according to the characteristics of substrate concrete and rolling loads.

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

THE COMPARISON OF PIFS AND HEAT TRANSFER WITH BASE CONFIGURATIONS (기저 형상에 따른 PIFS 및 열전달 비교 연구)

  • Kim, J.G.;Lee, J.W.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.195-200
    • /
    • 2010
  • Numerical investigation was conducted to study the effects of after-body configurations and nozzle lip on the PIFS(Plume Induced Flow Separation) and eat flux to the base face. Two dimensional and axi-symmetric non-equilibrium Navier-Stoke's solver with $k-{\omega}$ SST turbulence model was used to solve the launching vehicle type configuration with propulsive jet. The experimental result of Robert J. McGhee was compared with our computational results for code validation. Three types of the after-body configurations (Straight, Boat-tail, Flare type) were simulated for this study. And the nozzle lip effect was studies using the three types of base configurations same simulation conditions. As a result of numerical investigations, higher pressure ratio condition and boat-tail after-body configuration caused severe PIFS phenomenon but the flare type after-body configuration and low pressure ratio suppressed PIFS. Flare type after-body configuration and low pressure ratio case reduced heat flux to base face. The nozzle lip dispersed the heat flux widely along the base face and the nozzle lip.

  • PDF

A Study on the Geometric Constraint Solving with Graph Analysis and Reduction (그래프의 분석과 병합을 이용한 기하학적제약조건 해결에 관한 연구)

  • 권오환;이규열;이재열
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-88
    • /
    • 2001
  • In order to adopt feature-based parametric modeling, CAD/CAM applications must have a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this paper, we describe a graph constructive approach to solving geometric constraint problems. Usually, a graph constructive approach is efficient, however it has its limitation in scope; it cannot handle ruler-and-compass non-constructible configurations and under-constrained problems. To overcome these limitations. we propose an algorithm that isolates ruler-and-compass non-constructible configurations from ruler-and-compass constructible configurations and applies numerical calculation methods to solve them separately. This separation can maximize the efficiency and robustness of a geometric constraint solver. Moreover, the solver can handle under-constrained problems by classifying under-constrained subgraphs to simplified cases by applying classification rules. Then, it decides the calculating sequence of geometric entities in each classified case and calculates geometric entities by adding appropriate assumptions or constraints. By extending the clustering types and defining several rules, the proposed approach can overcome limitations of previous graph constructive approaches which makes it possible to develop an efficient and robust geometric constraint solver.

  • PDF

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.