• Title/Summary/Keyword: Separate of particles

Search Result 143, Processing Time 0.024 seconds

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Preliminary Study on the Development of Alternative Methods for the Treatment of TRISO Fuels (TRISO 연료 대체 처리방법 개발에 관한 선행연구)

  • Lee Jong-Hyeon;Shim Joon-Bo;Ahn Byung-Gil;Kwon Sang-Woon;Kim Eung-Ho;Yoo Jae-Hyung;Park Seong-Won;Snyder Christine T.;Leibowitz Leonard
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.201-211
    • /
    • 2005
  • In this study, conventional head-end processes of spent TRISO fuel have been reviewed to develope more effective treatment methods. The main concerns in the TRISO treatment are to effectively separate the carbon and SiC contained in the TRISO particles. The crush-burn scheme which was considered in the early stages of the development has been replaced by the crush-leach process because of $^{14}C$ problems as a second waste being generated during the process. However, there are still many obstacles to overcome in the reported processes. Hence, innovative thermomechanical concepts and a molten salt electrochemical approach to breach the coating layers of the TRISO particle with a minimized amount of second waste are proposed in this paper and their principles are described in detail.

  • PDF

Brief Review of Tailings Treatments in Oil Sands Field (오일샌드 테일링 처리 동향연구)

  • Kyeongseok Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.332-341
    • /
    • 2023
  • The controversy is becoming a hot issue after informed that the water release from Canadian oil sands tailings may initiate within a few years. The surface-mined bitumen extraction in open pit generates wastewater inevitably, which has been conveyed to store in tailings ponds. Currently, the size of tailings pond is getting seriously larger. It is known that tailings treatment is very difficult because the generation of MFT (mature fine tailings) layer is hardly processable. It would be the key process to separate solids and liquid placed within MFT where fine particles are well dispersed. In this paper, the surface-mined bitumen extraction process was first introduced, and followed by presenting the components of tailings as well as the characteristics of MFT. In addition, MFT process options were evaluated. It is expected that successful MFT treatments may be achieved by dewatering process using effective polymer flocculants in near future.

Development of Geochemical Tracers to Identify a Specific Source Region of Mineral Dust in China and Preliminary Test of Their Applicability (중국 기원 광물성 먼지 입자의 지화학 추적자 개발 및 기초 적용연구)

  • Lee, Sojung;Hyeong, Kiseong;Kim, Wonnyon;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.169-181
    • /
    • 2019
  • The purpose of this study is to develop geochemical tracers to identify a specific source desert of mineral dust in China using the published data. In addition, we tested the applicability of these tracers to wet-deposits and soil samples collected in Jeju, Korea. Because of similarity in trace elemental compositions of mineral dust from the major arid regions in China, such as Taklimakan, West Ordos (Badain Jaran), East Ordos (Mu Us and Hobq), East Northern China (Horqin), West Northern China (Gurbantunggut), and Chinese Loess Plateau, there has been limited to the use of geochemical data for source identification. Here we propose the four (4) plots using combination of seven (7) geochemical variables as a source indicator to distinguish one from other source regions in China: $\frac{Y}{Tb_N}$ vs. $\frac{Th}{{\Sigma}REE_N}$, $\(\frac{La}{Gd}\)_N$ vs. $\frac{Y}{{\Sigma}REE_N}$, $\frac{Th}{Tb_N}$ vs. $\frac{Y}{Nd_N}$, and $\frac{Th}{Tb_N}$ vs. $\(\frac{Ce}{Ce}\)_N^*$, where $_N$ and $\(\frac{Ce}{Ce}\)_N^*$ stand for values normalized to Post-Archean Average Shale composition and Ce anomaly, respectively. Mineral dusts from aforementioned six major deserts are distinguished one from the others by the combined use of these variables. Jeju rock and soil samples form a separate domain from Chinese mineral dusts in all four plots. In contrast, most of Jeju dust samples were comparable with the West Ordos desert (Badain Jaran) domain, indicative of strong influence of Badain Jaran dust in Jeju in spring season when the mineral dust was collected. A weak positive Ce anomaly in Jeju samples implies minimal local contribution. Our study suggests that the combination of $\frac{Y}{Tb_N}$ vs. $\frac{Th}{{\Sigma}REE_N}$, $\(\frac{La}{Gd}\)_N$ vs. $\frac{Y}{{\Sigma}REE_N}$, $\frac{Th}{Tb_N}$ vs. $\frac{Y}{Nd_N}$, and $\frac{Th}{Tb_N}$ vs. $\(\frac{Ce}{Ce}\)_N^*$ can be used to identify a specific source region of mineral dust in China as well as Jeju mineral particles.

Preparation of High Purity α-Alumina from Aluminum Black Dross by Redox Reaction (알루미늄 블랙 드로스로부터 산화 환원반응을 이용한 고순도 알파 알루미나의 제조)

  • Shin, Eui-Sup;An, Eung-Mo;Lee, Su-Jeong;Ohtsuki, Chikara;Kim, Yun-Jong;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.445-449
    • /
    • 2012
  • We investigate the effects of redox reaction on preparation of high purity ${\alpha}$-alumina from selectively ground aluminum dross. Preparation procedure of the ${\alpha}$-alumina from the aluminum dross has four steps: i) selective crushing and grinding, ii) leaching process, iii) redox reaction, and iv) precipitation reaction under controlled pH. Aluminum dross supplied from a smelter was ground to separate metallic aluminum. After the separation, the recovered particles were treated with hydrochloric acid(HCl) to leach aluminum as aluminum chloride solution. Then, the aluminum chloride solution was applied to a redox reaction with hydrogen peroxide($H_2O_2$). The pH value of the solution was controlled by addition of ammonia to obtain aluminum hydroxide and to remove other impurities. Then, the obtained aluminum hydroxide was dried at $60^{\circ}C$ and heat-treated at $1300^{\circ}C$ to form ${\alpha}$-alumina. Aluminum dross was found to contain a complex mixture of aluminum metal, aluminum oxide, aluminum nitride, and spinel compounds. Regardless of introduction of the redox reaction, both of the sintered products are composed mainly of ${\alpha}$-alumina. There were fewer impurities in the solution subject to the redox reaction than there were in the solution that was not subject to the redox reaction. The impurities were precipitated by pH control with ammonia solution, and then removed. We can obtain aluminum hydroxide with high purity through control of pH after the redox reaction. Thus, pH control brings a synthesis of ${\alpha}$-alumina with fewer impurities after the redox reaction. Consequently, high purity ${\alpha}$-alumina from aluminum dross can be fabricated through the process by redox reaction.

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.

Comparative Evaluation on Collision and Particle Separation Efficiency between CO2 Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process (부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가)

  • Yang, Jong-Won;Choi, Yong-Ho;Chae, In-Seok;Kim, Mi-Sug;Jeong, Yong-Hoon;Kim, Tae-Geum;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • In recent years, carbon dioxide ($CO_2$) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using $CO_2$ as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized $CO_2$ only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between $CO_2$ bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of $CO_2$ bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that $CO_2$ bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.

Variation of Flow and Filtration Mechanisms in an Infiltration Trench Treating Highway Stormwater Runoff (고속도로 강우유출수 처리를 위한 침투도랑에서 흐름조건에 따른 여과기작 및 효율분석)

  • Guerra, Heidi B.;Yu, Jianghua;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • The particle filtration mechanisms in an infiltration trench should be varying due to the different hydraulic conditions during stormwater runoff. The understanding of these variations associated with different filtration mechanisms and their effect on the particle removal efficiency is of vital importance. Therefore, a LID (Low Impact Development) system comprising of an infiltration trench packed with gravel and woodchip was investigated during the monitoring of several independent rainfall events. A typical rainfall event was divided into separate regimes and their corresponding flow conditions as well as filtration mechanisms in the trench were analyzed. According to hydraulic conditions, it was found out that filtration changes between vertical and horizontal flows as well as between unsaturated, saturated, and partially-saturated flows. Particle separation efficiency was high (55-76%) and was mainly governed by physical straining during the unsaturated period. It was then enhanced by diffusion during the saturated period (75-95%). When the trench became partially saturated at the end of the rainfall event, the efficiency decreased which was believed to be due to the existence of a negatively charged air-water interface which limited the removal to positively charged particles.

An Experimental Study on the Energy Separation of the $100Nm^3$/hr Vortex Tube for $CO_2$ Absorption ($CO_2$ 흡수용 $100Nm^3$/hr급 Vortex Tube의 에너지분리 특성에 관한 실험적 연구)

  • Kim, Chang-Su;Han, Keun-Hee;Park, Sung-Young
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.213-219
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold gas. Due to energy and particle separation ability, a vortex tube can be used as the main component of the $CO_2$ absorption device. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. To obtain the preliminary design data, energy separation characteristics of the vortex tube has been tested for orifice diameter, nozzle area ratio, and tube length. As a result, the orifice diameter is the major factor of the vortex tube design. The nozzle area ratio and tube length have a minor effect on the energy separation performance. For Dc=0.6D, AR=0.14~0.16, and L=16D, maximum energy separation has been occurred. The result from this study can be used as the basic design data of the $100Nm^3$/hr class vortex tube applied to the $CO_2$ absorption device. Compared with the $CO_2$ absorption process containing an absorption tower, the process with a vortex tube is expected to have a huge advantage of saving the installation space and the operating cost.

Current Status and Management of Nanoplastics Exposed in Environment (환경 중 노출되는 나노플라스틱의 현황 및 관리실태)

  • Ha-neul Park;Jeonggue Park;Younghun Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Nanoplastics (NP) exhibit distinct material properties compared to microplastics (MP), necessitating their separate recognition. Review of research outcomes and policy documents on NP reveals that most policy frameworks predominantly define MPs as solid synthetic polymer materials measuring 5 mm or less, but do not distinguish them from NP. However, recent revisions in regulations by the EU classify NPs as particles that range in size from 1 to 1,000 nm, as confirmed by some academic studies. Research on NPs often relies on experimental investigations centered around water systems, with a focus on high-concentration experimental conditions using spherical polystyrene-based NPs in behavior and impact studies. Notably, the environmental behavior characteristics of NP show differences in influence depending on the NP type, emphasizing the need for field simulation research. These challenges are mirrored in Korean society, so it is necessary to redefine NP to be distinct from MP in both research and policy. This study aimed to assess the current state of NP management globally and domestically and highlight policy considerations and issues in the existing response to NP. Upon comprehensive review, it becomes apparent that reaching an international agreement on MP faces methodological limitations, which could potentially burden efforts to precisely define NP size. Therefore, referencing the EU's recent regulatory revisions is crucial in domestic policy. Specific adjustments should commence from the MP concept through insights from the domestic industry, guidance from the academic community, and thorough discussions to ensure social acceptance.