• 제목/요약/키워드: Sentiment word analysis

검색결과 125건 처리시간 0.201초

집단민원의 감성분석을 이용한 공간빅데이터 시각화 방안 (A Study on the Visualization of Geospatial Big Data using Sentiment Analysis of Collective Civil Complaints)

  • 주용진
    • 한국지리정보학회지
    • /
    • 제26권1호
    • /
    • pp.11-20
    • /
    • 2023
  • 전통적으로 공공 서비스에 대한 만족도 요인을 측정하기 위해 설문조사나 인터뷰 연구가 주를 이뤄 왔다. 민원의 단순 빈도를 떠나 민원에 내포된 감정의 경중까지 고려되지 않아 민원인이 체감하는 민원의 시급성, 고충의 심각 정도를 판단하기 어렵다. 이에 본 연구의 목적은 헤도노미터 단어별 행복도 점수를 활용해 집단민원이 내포하는 부정적 감성수치를 산정하는 방안을 제시하였다. 국민권익위원회의 2021년 지역별 상위 민원 토픽과 연관키워드 데이터를 대상으로 헤도노미터를 적용하여 민원의 주제별 부정적 감성수치를 산출하고, 지역별로 분포를 가시화하였다. 본 연구결과로 도출된 부정적 감성수치를 이용해 민원에 내포된 감정의 경중을 고려하여 민원인이 체감하는 민원의 시급성, 고충의 심각 정도를 판단하는데 도움이 될 수 있을 것으로 기대된다.

An Ensemble Classification of Mental Health in Malaysia related to the Covid-19 Pandemic using Social Media Sentiment Analysis

  • Nur 'Aisyah Binti Zakaria Adli;Muneer Ahmad;Norjihan Abdul Ghani;Sri Devi Ravana;Azah Anir Norman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.370-396
    • /
    • 2024
  • COVID-19 was declared a pandemic by the World Health Organization (WHO) on 30 January 2020. The lifestyle of people all over the world has changed since. In most cases, the pandemic has appeared to create severe mental disorders, anxieties, and depression among people. Mostly, the researchers have been conducting surveys to identify the impacts of the pandemic on the mental health of people. Despite the better quality, tailored, and more specific data that can be generated by surveys,social media offers great insights into revealing the impact of the pandemic on mental health. Since people feel connected on social media, thus, this study aims to get the people's sentiments about the pandemic related to mental issues. Word Cloud was used to visualize and identify the most frequent keywords related to COVID-19 and mental health disorders. This study employs Majority Voting Ensemble (MVE) classification and individual classifiers such as Naïve Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR) to classify the sentiment through tweets. The tweets were classified into either positive, neutral, or negative using the Valence Aware Dictionary or sEntiment Reasoner (VADER). Confusion matrix and classification reports bestow the precision, recall, and F1-score in identifying the best algorithm for classifying the sentiments.

잠재 토픽 기반의 제품 평판 마이닝 (Latent topics-based product reputation mining)

  • 박상민;온병원
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.39-70
    • /
    • 2017
  • 최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.

Emotional Reactions, Sentiment Disagreement, and Bitcoin Trading

  • Dong-Yeon Kim;Yongkil Ahn
    • 아태비즈니스연구
    • /
    • 제14권4호
    • /
    • pp.37-48
    • /
    • 2023
  • Purpose - This study aims to explore the influence of emotional discrepancies among investors on the cryptocurrency market. It focuses on how varying emotions affect market dynamics such as volatility and trading volume in the context of Bitcoin trading. Design/methodology/approach - This study involves analyzing data from Bitcointalk.org, consisting of 57,963 posts and 2,215,776 responses from November 22, 2009, to December 31, 2022. Tools used include the Linguistic Inquiry and Word Count (LIWC) software for classifying emotional content and the Python Pattern library for sentiment analysis. Findings - The results show that heterogeneous emotional feedback, whether positive or negative, significantly influences Bitcoin's intraday volatility, skewness, and trading volume. These findings are more pronounced when the underlying emotion in the feedback is amplified. Research implications or Originality - This study underscores the significance of emotional factors in financial decision-making, especially within the realm of social media. It suggests that investors and market strategists should consider the emotional landscape of online forums when making investment choices or formulating market strategies. The research also paves the way for future studies regarding the behavioral impact of emotions on the cryptocurrency market.

SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구 (Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS)

  • 이종화
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권3호
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

Research on the change of perception of abandoned dogs through big data analysis

  • Jang, Ji-Yun;Lee, Seok-Won
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권9호
    • /
    • pp.115-123
    • /
    • 2021
  • 본 연구에서는 빅데이터 분석을 통해 유기견에 대한 국민 인식 변화를 분석하고자 한다. 2017년 1월부터 2020년 7월까지의 데이터를 수집하여 유기견을 키워드로 한 사회적 이슈의 양적변화가 유기견에 대한 국민 인식에 어떠한 영향을 끼쳤고, 긍정/부정적인 인식에 영향을 주는 요인들을 분석하였다. 연구 결과, 유기견 수와 유기견과 관련한 문서 수는 양의 상관관계를 가지고 있음을 확인할 수 있었고, 텍스트 마이닝과 네트워크 분석, 감정 분석 등 다양한 분석 기법을 통해 구체적으로 어떠한 시계열적 변화가 있는지 알 수 있었다. 이 연구는 유기견에 대한 정책 수립이나 다른 연구에 활용될 수 있는 기본 데이터로써 의의를 가질 것이다. 유기견에 대한 인식을 개선하고 책임의식을 기를 수 있도록 문제를 해결해 나가는데 도움이 되기를 기대한다.

Topic Classification for Suicidology

  • Read, Jonathon;Velldal, Erik;Ovrelid, Lilja
    • Journal of Computing Science and Engineering
    • /
    • 제6권2호
    • /
    • pp.143-150
    • /
    • 2012
  • Computational techniques for topic classification can support qualitative research by automatically applying labels in preparation for qualitative analyses. This paper presents an evaluation of supervised learning techniques applied to one such use case, namely, that of labeling emotions, instructions and information in suicide notes. We train a collection of one-versus-all binary support vector machine classifiers, using cost-sensitive learning to deal with class imbalance. The features investigated range from a simple bag-of-words and n-grams over stems, to information drawn from syntactic dependency analysis and WordNet synonym sets. The experimental results are complemented by an analysis of systematic errors in both the output of our system and the gold-standard annotations.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

밀키트 제품 리뷰 데이터를 이용한 텍스트 분석 사례 연구 (A Case Study on Text Analysis Using Meal Kit Product Review Data)

  • 최혜선;연규필
    • 한국콘텐츠학회논문지
    • /
    • 제22권5호
    • /
    • pp.1-15
    • /
    • 2022
  • 본 연구에서는 밀키트 제품 평가에 영향을 미치는 요인을 파악하기 위하여 밀키트 제품 리뷰 데이터에 대한 텍스트 분석을 수행하였다. 분석에 사용된 자료는 네이버 쇼핑 사이트에서 판매되고 있는 밀키트 제품에 대한 리뷰 334,498건을 스크래핑하여 수집하였다. 텍스트 자료에 대한 전처리 과정을 거쳐 제품 리뷰에 빈번히 등장하는 단어를 추출한 후 워드클라우드 및 감성분석을 수행하였다. 감성분석시 제품 리뷰에 대한 긍정 또는 부정의 레이블은 평점을 기준으로 설정하여 반응변수로 활용하였고, 입력변수로는 단어들의 정규화 단어빈도-역문서빈도 (TF-IDF) 값을 구하여 사용하였다. 리뷰의 극성을 판별하는 모형으로는 로지스틱 회귀모형, 서포트 벡터 머신, 랜덤 포레스트 알고리즘을 적용하였으며, 분류 정확도 및 해석가능성을 고려하여 로지스틱 회귀모형을 최종 모형으로 선택한 후 제품 범주별 감성분석 모형으로 사용하였다. 각 제품 범주별로 도출된 로지스틱 회귀모형으로부터 밀키트 제품 구매 후 긍·부정의 감성을 발생시킨 주요 요인들을 밝혀내었다. 결과적으로 텍스트 분석을 통해 밀키트 제품 개발 시 특정 카테고리, 메뉴, 재료에 대한 긍정 요소를 극대화하고 부정적 위험 요소를 제거할 수 있는 기반을 제공할 수 있음을 확인하였다.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.259-266
    • /
    • 2023
  • 본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.