• Title/Summary/Keyword: Sentiment word analysis

Search Result 125, Processing Time 0.021 seconds

Multilayer Knowledge Representation of Customer's Opinion in Reviews (리뷰에서의 고객의견의 다층적 지식표현)

  • Vo, Anh-Dung;Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

A Study of Correlation Analysis between Increase / Decrease Rate of Tweets Before and After Opening and a Box Office Gross (개봉 전후 트윗 개수의 증감률과 영화 매출간의 상관관계)

  • Park, Ji-Yun;Yoo, In-Hyeok;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.169-182
    • /
    • 2017
  • Predicting a box office gross in the film industry is an important goal. Many works have analyzed the elements of a film making. Previous studies have suggested several methods for predicting box office such as a model for distinguishing people's reactions by using a sentiment analysis, a study on the period of influence of word-of-mouth effect through SNS. These works discover that a word of mouth (WOM) effect through SNS influences customers' choice of movies. Therefore, this study analyzes correlations between a box office gross and a ratio of people reaction to a certain movie by extracting their feedback on the film from before and after of the film opening. In this work, people's reactions to the movie are categorized into positive, neutral, and negative opinions by employing sentiment analysis. In order to proceed the research analyses in this work, North American tweets are collected between March 2011 and August 2012. There is no correlation for each analysis that has been conducted in this work, hereby rate of tweets before and after opening of movies does not have relationship between a box office gross.

Design of Big Data Preference Analysis System (빅데이터 선호도 분석 시스템 설계)

  • Son, Sung Il;Park, Chan Khon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1286-1295
    • /
    • 2014
  • This paper suggests the way that it could improve the reliability about preference of user's feedback by adding weighting factor on sentiment analysis, and efficiently make a sentiment analysis of users' emotional perspective on the big data massively generated on twitter. To solve errors on earlier studies, this paper has improved recall and precision of sensibility determination by using sensibility dictionary subdivided sentiment polarity based on the level of sensibility and given impotance to sensibility determination by populating slang, new words, emoticons and idiomatic expressions not in the system dictionary. It has considered the context through conjunctive adverbs fixed in korean characteristics which are free to the word order. It also recognize sensibility words such as TF(Term Frequency), RT(Retweet), Follower which are weighting factors of preference and has increased reliability of preference analysis considering weight on 'a very emotional tweet', 'a recognised tweet from users' and 'a tweeter influencer'

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.

A study on real-time internet comment system through sentiment analysis and deep learning application

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.3-14
    • /
    • 2023
  • This paper proposes a big data sentiment analysis method and deep learning implementation method to provide a webtoon comment analysis web page for convenient comment confirmation and feedback of webtoon writers for the development of the cartoon industry in the video animation field. In order to solve the difficulty of automatic analysis due to the nature of Internet comments and provide various sentiment analysis information, LSTM(Long Short-Term Memory) algorithm, ranking algorithm, and word2vec algorithm are applied in parallel, and actual popular works are used to verify the validity. If the analysis method of this paper is used, it is easy to expand to other domestic and overseas platforms, and it is expected that it can be used in various video animation content fields, not limited to the webtoon field

  • PDF

The effect of negated emotional words on polarity reversal and weakening value in valence (정서 단어 부정어가 정서가의 극성 전환 및 약화에 미치는 영향)

  • Rhee, Shin-Young;Ham, Jun-Seok;Kim, Mi-Sun;Bang, Green;Ko, Il-Ju
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.1
    • /
    • pp.97-107
    • /
    • 2012
  • Previous studies on opinion mining and sentiment analysis have supposed that the polarity and value of an emotional word is reversed when a negation word is attached. However, there are no quantitative studies on how much the polarity is changed when a negation word is following. Therefore, we measured the valence and arousal dimensions for Korean emotional words and their negations. Consequently, the polarity of valence and arousal was reversed on their intermediate level. Also, the value was reduced by about 30% to 50%. We propose this result as a guideline for processing negation words for studies on opinion mining and sentiment analysis.

  • PDF

System Design for Analysis and Evaluation of E-commerce Products Using Review Sentiment Word Analysis (리뷰 감정 분석을 통한 전자상거래 상품 분석 및 평가 시스템 설계)

  • Choi, Jieun;Ryu, Hyejin;Yu, Dabeen;Kim, Nara;Kim, Yoonhee
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.209-217
    • /
    • 2016
  • As smartphone usage increases, the number of consumers who refer to review data of e-commercial products using web sites and SNS is also explosively multiplying. However, reading review data using traditional websites and SNS is time consuming. Also, it is impossible for consumers to read all the reviews. Therefore, a system that collects review data of products and conducts sentiment word analysis of the review is required to provide useful information. The majority of systems that provide such information inadequately reflect the properties of the product. In this study, we described a system that provides analysis and evaluation of e-commerce products through review sentiment words as reflected properties of the product. Furthermore, the system enables consumers to access processed information about reviews quickly and in visual format.

Sentiment analysis of nuclear energy-related articles and their comments on a portal site in Rep. of Korea in 2010-2019

  • Jeong, So Yun;Kim, Jae Wook;Kim, Young Seo;Joo, Han Young;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1013-1019
    • /
    • 2021
  • This paper reviewed the temporal changes in the public opinions on nuclear energy in Korea with a big data analysis of nuclear energy-related articles and their comments posted on the portal site NAVER. All articles that included at least one of "nuclear energy," "nuclear power plant (NPP)," "nuclear power phase-out," or "anti-nuclear" in their titles or main text were extracted from those posted on NAVER in January 2010-December 2019. First, we performed annual word frequency analysis to identify what words had appeared most frequently in the articles. For that period, the most frequent words were "NPP," "nuclear energy," and "energy." In addition, "safety" has remained in the upper ranks since the Fukushima NPP accident. Then, we performed sentiment analysis of the pre-processed articles. The sentiment analysis showed that positive-tone articles have been reported more frequently than negativetone over the entire analysis period. Last, we performed sentiment analysis of the comments on the articles to examine the public's intention regarding nuclear issues. The analysis showed that the number of negative comments to articles each month-irrespective of positive or negative tone-was always larger than that of positive comments over the entire analysis period.

Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis

  • Shin, Bee;Ryu, Sohee;Kim, Yongjun;Kim, Dongwhan
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The importance of online reviews is prevalent as more people access goods or places online and make decisions to visit or purchase. However, such reviews are generally provided by short sentences or mere star ratings; failing to provide a general overview of customer preferences and decision factors. This study explored and broke down restaurant reviews found on Google Maps. After collecting and analyzing 5,427 reviews, we vectorized the importance of words using the TF-IDF. We used a random forest machine learning algorithm to calculate the coefficient of positivity and negativity of words used in reviews. As the result, we were able to build a dictionary of words for positive and negative sentiment using each word's coefficient. We classified words into four major evaluation categories and derived insights into sentiment in each criterion. We believe the dictionary of review words and analyzing the major evaluation categories can help prospective restaurant visitors to read between the lines on restaurant reviews found on the Web.