• 제목/요약/키워드: Sentiment Analysis of Story Event

검색결과 2건 처리시간 0.017초

Extracting and Clustering of Story Events from a Story Corpus

  • Yu, Hye-Yeon;Cheong, Yun-Gyung;Bae, Byung-Chull
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3498-3512
    • /
    • 2021
  • This article describes how events that make up text stories can be represented and extracted. We also address the results from our simple experiment on extracting and clustering events in terms of emotions, under the assumption that different emotional events can be associated with the classified clusters. Each emotion cluster is based on Plutchik's eight basic emotion model, and the attributes of the NLTK-VADER are used for the classification criterion. While comparisons of the results with human raters show less accuracy for certain emotion types, emotion types such as joy and sadness show relatively high accuracy. The evaluation results with NRC Word Emotion Association Lexicon (aka EmoLex) show high accuracy values (more than 90% accuracy in anger, disgust, fear, and surprise), though precision and recall values are relatively low.

텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구 (A study on detective story authors' style differentiation and style structure based on Text Mining)

  • 문석형;강주영
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.89-115
    • /
    • 2019
  • 본 연구는 고전 추리 소설 작가로 유명한 아서 코난 도일과 애거서 크리스티의 문체적 차이점을 데이터 분석을 통해 제시하고, 나아가 텍스트 마이닝에 입각한 문체 연구의 해석적 방법론을 제시하고자 시행되었다. 추리 소설의 핵심 요소인 사건과 인물에 더해 작가의 문법적인 집필 방식을 문체로 정의하고 분석을 시도하였다. 작가 별로 각 2권, 총 4권의 책을 선정하였으며 문장 단위로 텍스트를 나누어 데이터를 확보하였다. 각 문장에 따른 감성 점수를 부여한 뒤 페이지 진행에 따른 감성을 시각화하였으며, 페이지에 따라 토픽 모델링을 적용하여 소설 속 사건 진행 흐름을 파악할 수 있었다. 동시 발생 매트릭스(co-occurrence matrix)를 구성하고 네트워크 분석(Network Analysis)을 시행함으로써 사건이 진행되는 과정에서 인물들 간 관계의 변화를 확인할 수 있었다. 또한 전체 문장을 총 6가지 문체를 기준으로 문법적인 체계를 나누어 작가 간, 그리고 작품 간 집필 방식의 차이점을 확인하였다. 이러한 일련의 연구 과정은 문체에 대한 이해를 바탕으로 글 전체의 맥락을 파악할 수 있도록 도움을 줄 수 있으며, 나아가 기존에 개별적으로 진행되었던 문체 연구를 통합시킴으로써 문체 구조에 대한 이해를 도울 수 있다. 그리고 이러한 선행된 이해를 통해 온라인 텍스트를 비롯한 비정형 데이터 속 문체의 존재를 발견하고 구체화하는 작업에 기여할 수 있다. 뉴미디어를 포함한 온라인 텍스트를 심도 있게 분석하고자 하는 시도가 증가하고 있는 상황에서 해당 연구들과 연계를 통해 보다 의미 있는 온라인 텍스트 분석에 기여할 것으로 기대된다.