• Title/Summary/Keyword: SentiStrength

Search Result 4, Processing Time 0.017 seconds

Differences in Sentiment on SNS: Comparison among Six Languages (SNS에서의 언어 간 감성 차이 연구: 6개 언어를 중심으로)

  • Kim, Hyung-Ho;Jang, Phil-Sik
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2016
  • The purpose of this study was to explore the differences in sentiment on social networking sites among six languages (English, German, Russian, Spanish, Turkish and Dutch). A total of 204 million tweets were collected using Streaming API. Subjective/objective ratio, sentiment strength, positive/negative ratio, number of retweets and boundary impermeability were analyzed with SentiStrength to estimate the trends of emotional expression via Twitter. The results showed that subjective/objective ratio and the positive/negative ratio of tweets were significantly different by languages (p<0.001). And, there were significant effects of language on sentiment strength, boundary impermeability and the number of retweets (p<0.001). The results also indicate that the cross-cultural, language differences should be taken into account in sentiment analysis on SNS.

A Comparative Study on Using SentiWordNet for English Twitter Sentiment Analysis (영어 트위터 감성 분석을 위한 SentiWordNet 활용 기법 비교)

  • Kang, In-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2013
  • Twitter sentiment analysis is to classify a tweet (message) into positive and negative sentiment class. This study deals with SentiWordNet(SWN)-based twitter sentiment analysis. SWN is a sentiment dictionary in which each sense of an English word has a positive and negative sentimental strength. There has been a variety of SWN-based sentiment feature extraction methods which typically first determine the sentiment orientation (SO) of a term in a document and then decide SO of the document from such terms' SO values. For example, for SO of a term, some calculated the maximum or average of sentiment scores of its senses, and others computed the average of the difference of positive and negative sentiment scores. For SO of a document, many researchers employ the maximum or average of terms' SO values. In addition, the above procedure may be applied to the whole set (adjective, adverb, noun, and verb) of parts-of-speech or its subset. This work provides a comparative study on SWN-based sentiment feature extraction schemes with performance evaluation on a well-known twitter dataset.

Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning

  • Faiza Nasir;Haseeb Ahmad;CM Nadeem Faisal;Qaisar Abbas;Mubarak Albathan;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.67-80
    • /
    • 2023
  • Rice is an important food crop for most of the population in Nowadays, psychologists consider social media an important tool to examine mental disorders. Among these disorders, depression is one of the most common yet least cured disease Since abundant of writers having extensive followers express their feelings on social media and depression is significantly increasing, thus, exploring the literary text shared on social media may provide multidimensional features of depressive behaviors: (1) Background: Several studies observed that depressive data contains certain language styles and self-expressing pronouns, but current study provides the evidence that posts appearing with self-expressing pronouns and depressive language styles contain high emotional temperatures. Therefore, the main objective of this study is to examine the literary cyber writers' posts for discovering the symptomatic signs of depression. For this purpose, our research emphases on extracting the data from writers' public social media pages, blogs, and communities; (3) Results: To examine the emotional temperatures and sentences usage between depressive and not depressive groups, we employed the SentiStrength algorithm as a psycholinguistic method, TF-IDF and N-Gram for ranked phrases extraction, and Latent Dirichlet Allocation for topic modelling of the extracted phrases. The results unearth the strong connection between depression and negative emotional temperatures in writer's posts. Moreover, we used Naïve Bayes, Support Vector Machines, Random Forest, and Decision Tree algorithms to validate the classification of depressive and not depressive in terms of sentences, phrases and topics. The results reveal that comparing with others, Support Vectors Machines algorithm validates the classification while attaining highest 79% f-score; (4) Conclusions: Experimental results show that the proposed system outperformed for detection of depression trends in literary cyber writers using sentiment analysis.

The Influence of Negative Emotions on Customer Contribution to Organizational Innovation in an Online Brand Community (온라인 브랜드 커뮤니티 내 부정적 감정들이 기업 혁신을 위한 고객 기여에 미치는 영향)

  • Jung, Suyeon;Lee, Hanjun;Suh, Yongmoo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.4
    • /
    • pp.91-100
    • /
    • 2013
  • In recent years, online brand communities, whereby firms and customers interact freely, are emerging trend, because customers' opinions collected in these communities can help firms to achieve their innovation effectively. In this study, we examined whether customer opinions containing negative emotions have influence on their adoption for organizational innovation. To that end, we firstly classified negative emotions into five categories of detailed negative emotions such as Fear, Anger, Shame, Sadness, and Frustration. Then, we developed a lexicon for each category of negative emotions, using WordNet and SentiWordNet. From 81,543 customer opinions collected from MyStarbucksIdea.com which is Starbucks' brand community, we extracted terms that belong to each lexicon. We conducted an experiment to examine whether the existence, frequency and strength of terms with negative emotions in each category affect the adoption of customer opinions for organizational innovation. In the experiment, we statistically verified that there is a positive relationship between customer ideas containing negative emotions and their adoption for innovation. Especially, Frustration and Sadness out of the five emotions are significantly influential to organizational innovation.