• Title/Summary/Keyword: Senti-word Net(SWN)

Search Result 2, Processing Time 0.038 seconds

A Comparative Study on Using SentiWordNet for English Twitter Sentiment Analysis (영어 트위터 감성 분석을 위한 SentiWordNet 활용 기법 비교)

  • Kang, In-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2013
  • Twitter sentiment analysis is to classify a tweet (message) into positive and negative sentiment class. This study deals with SentiWordNet(SWN)-based twitter sentiment analysis. SWN is a sentiment dictionary in which each sense of an English word has a positive and negative sentimental strength. There has been a variety of SWN-based sentiment feature extraction methods which typically first determine the sentiment orientation (SO) of a term in a document and then decide SO of the document from such terms' SO values. For example, for SO of a term, some calculated the maximum or average of sentiment scores of its senses, and others computed the average of the difference of positive and negative sentiment scores. For SO of a document, many researchers employ the maximum or average of terms' SO values. In addition, the above procedure may be applied to the whole set (adjective, adverb, noun, and verb) of parts-of-speech or its subset. This work provides a comparative study on SWN-based sentiment feature extraction schemes with performance evaluation on a well-known twitter dataset.

Construction and Evaluation of a Sentiment Dictionary Using a Web Corpus Collected from Game Domain (게임 도메인 웹 코퍼스를 이용한 감성사전 구축 및 평가)

  • Jeong, Woo-Young;Bae, Byung-Chull;Cho, Sung Hyun;Kang, Shin-Jin
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.113-122
    • /
    • 2018
  • This paper describes an approach to building and evaluating a sentiment dictionary using a Web corpus in the game domain. To build a sentiment dictionary, we collected vocabulary based on game-related web documents from a domestic portal site, using the Twitter Korean Processor. From the collected vocabulary, we selected the words whose POS are tagged as either verbs or adjectives, and assigned sentiment score for each selected word. To evaluate the constructed sentiment dictionary, we calculated F1 score with precision and recall, using Korean-SWN that is based on English Senti-word Net(SWN). The evaluation results show that average F1 scores are 0.85 for adjectives and 0.77 for verbs, respectively.